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It is shown in a concise manner using Debever’s vectorial formalism that the Bertotti-Robinson solution
is the most general conformally flat solution of the source free Einstein-Maxwell equations for nonnull

electromagnetic fields.

1. INTRODUCTION

This note concerns a solution of the source free Ein-
stein—-Maxwell equations, which, with a suitable
choice of units, may be written as follows:

(1.1a)
(1.1b)

Rab=Fachc'%guchdFCd3
Fab;b:F[ab;clzo'

Robinson' presented the following solution to these equa-
tions:

ds? = (Axtdx®)? + 2dx0 dxt - (dx?)? - (coshxzdxg)z’ (1.2a)

F_,=V2x(6%) cosu + 622 cosax® sinp) . (1.2b)
ab ab ab

He observed that the electromagnetic field (1.2b) is co-
variantly constant and that under the change of coordin-
ates \x'=(t —+,1/7,1/2 ~ 8, ¥) the metric (1.2a) takes the
form

ds?= () 2[dt? — dr® - »*(d6® + sin®8dy?)], (1.3)

showing that the space is conformally flat. Bertotti?
found independently the same solution in a different co-
ordinate system as a solution to equations (1.1) for a co-
variantly constant electromagnetic field in the presence
of a cosmological constant. Eardley® has characterized
the solution as the only solution of equations (1.1) ad-
mitting a covariantly constant nonnull electromagnetic
field. Cahen and Leroy* obtained a solution equivalent
to (1.2a) as a limiting case of Petrov type N solutions
of Egs. (1.1) for nonnull electromagnetic fields. The
space-time with metric (1.2a) has been characterized
by Cahen and McLenaghan® as the only conformally flat
space~time with a covariantly constant Riemann tensor
and R,,R°*=R=0. The solution also appears among the
Schriddinger separable solutions of the Einstein-Max-
well equations found by Carter® and in the list of space-
times with local isotropy given by Cahen and Defrise.”
The solution is a metric product of two two-dimensional
spaces of constant curvature and hence admits a six-
parameter group of motions. The properties of this
solution have also been investigated by Lindquist,®
Lovelock, ® and Dolan. '

In a recent article Tariq and Tupper'' characterize the
the solution (1.2) as the most general conformally flat
solution of the source free Einstein—-Maxwell equations
for a nonnull electromagnetic field. It is the purpose
of this note to present an alternative proof of this re-
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sult, which seems to be more direct, using the vectori-
al formalism of Debever.'?

2. NOTATION AND CONVENTIONS

Let 6° (i=0, 1,2, 3) denote a tetrad of null 1-forms
with 6° and 6° real and 9'='¢> complex. In the tetrad the
metric of V, has the form

ds?=266° — 266 (2.1)

The absence of torsion of the pseudo-Riemannian con-
nection is expressed by the equation

de'+ wi A0i=0, (2.2)

where w! ; denote the 1-form valued components of the
connection. A basis of the space of self-dual 2-forms is
given by

Z =0PA 0, Z2=00A6', Z3=%(6°A6°_6'A6%). (2.3)
The metric in this space is

y*B=25008) — 36258 (0,8=1,2,3). (2.4)
In terms of the basis (2.3) Eq. (2.2) has the form

dz*+0*nZ8=0. (2.5)
The quantities ¢ % are related to the w*; by

0%, = ~w? —wb, 0% =20, o'5=20%. (2.6)

To the 1-form valued matrix ¢%; we may associate the
vectorial 1-form

R LV (2.7)

where €*7” is the three-dimensional Levi-Civita sym-
bol. The components of 0% with respect to the basis {6'}
are denoted by 0%,. They are proportional to the NP
spin coefficients.'® Thevectorial curvature 2-form T, is
defined by the relations

Z,=do? 0% 0®, T,=do'+0'Ac?

(2.8)
T,=-2do® —o'ag?.
Writing Z, in the basis {Z*} yields
2a=(Cap —5RY4s)ZP + E 32° (2.9)

where the trace-free symmetric tensor C , corresponds
to the Weyl tensor, the Hermitian tensor E; to the
trace-free Ricci tensor, and R denotes the curvature
scalar. The components of C,; and E, g are proportional
to the NP scalars.'

Bianchi’s identities have the form

(DC g —EvagdRINZP + DE g0 ZP =0, (2.10)
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where
DCaB=de—C,BUYu—CO‘7073, (2.11)
DEag=dEa§—E,,50'7m —Ea-y—O'_YB. (2.12)

Finally the Einstein-Maxwell field equations may be
written as

Eo5=-2F,Fy, (2.13)

R=0, (2.14)

dF =0, (2.15)
where

F<F,z® (2.16)

is the self-dual part of the electromagnetic field 2-form.

3. DERIVATION OF THE RESULT

We choose the 1-forms #° and 6° to be proportional to
the characteristic 1-forms of the nonnull electromagne-
tic field. With this choice

F=F,Z°, (3.1)
and the Einstein-Maxwell equations take the form

R=E;3=0 (0¢=1,2,3, 8=1,2), (3.2a)

Eg=-2F,F,. (3.2b)

The tetrad is determined by the above choice modulo the
transformations

90, — eaen’ 91, - eibal’ 93/ — e-ags . (3L3)
The assumption of conformal flatness is equivalent to
Ces=0 (a,8=1,2,3). (3.4)

With the help of Bianchi’s identities (2.10), (2.11), and
(2.12) we obtain

0*NZ3=0'AZP=dE5AZ*=0. (3.5)
It follows that

ol=02=0, (3.6)

E3§= —k, (3.7)

where k>0 is a real constant.

The conditions (3.6) allow a first form of the metric to
be obtained. From Egs. (2.2), (2.6), and (2.7) we obtain

d6°= ~:(0*+T3)A6°,

dot= —5(0® —T3)A0", (3.8)
de*=3(02+T3)AC°.

It follows that
detnet=0 (i=0,1,3). (3.9)

This implies that there exists a system of coordinates
(u, z,Z,v), real valued functions e and ¢, and a complex
valued function F such that

O =edu, 6'=Fdz, 6 =gdv. (3.10)

We now use the remaining tetrad freedom (3.3) to set
6' = fdz, (3.11)

6° = du, 6°=gdv,
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where f is a real valued funetion of the coordinates.
From (3.8) and (3.11) we deduce

08, =-0%,=f7,, o3 =g¢g7g, 0%,=0, (3.12)

fu=1:=8,=0. (3.13)
Thus the general form of the metric satisfying (3.6) is

ds® =2g dudv - 2f?dzdz, (3.14)

where f=f{(z, Z) and g =¢{u, ) are real valued functions
which without loss of generality can be taken to be posi-
tive. In order to determine these functions, it remains
to solve the field equations (2.8) which on account of
(3.2), (3.4), and (3.7) reduce to

(3.15)
(3.16)

4v‘5r -1(1Ogg)uu =~k »
8f2(logf) ;= -k .

By means of the substitution g =¢
(3.15) becomes

6,=em. (3.17)

uv

8 1
™, where m= -3k, Eq.

This equation has the general solution (Forsyth!®)
M =2mT O+ NP ,0,,

where ¢ and ¢ are arbitrary functions of # and » respec-
tively. If we now choose ¢ and ¢ as coordinates, we
have

(3.18)

0°0° = ~8L M+ Y)2dod dif (3.19)

which after a further coordinate transformation be-
comes

8°6% = (1 + huw) 2dudr . (3.20)

In order to solve Eq. {3.16), we make the substitution
f?=¢®*, The transformed equation is

dagz=e7F, (3.21)

It has the general solution (Forsyth'®)

e =3h(1+ XXP(X, X, (3.22)

where X is an arbitrary analytic function of z. On
choosing X as a new coordinate we have

8'6% = 8k (1+ XX)2dXdX , (3.23)

which by means of a simple coordinate transformation
takes the form
8 6° = (1+ ghaZ ) 2dzdZ . (3.24)

It remains to solve Maxwell’s equations (2.15). It fol-

lows from (2.5), (3.6), and (3.12) that dZ*=0. Thus

from (2.16) and (3.1) we conclude that F, =const. With

the help of (3.2b) and (3.7) we may write
F =V (k/2)e*?,

where ¢ is a real constant.

(3.25)

4. CONCLUSION

In a conformally flat space-time in which the source
free Einstein-Maxwell equations (1.1) are satisfied for
a nonnull electromagnetic field there exists a system
of coordinates (u, z, Z, v) with respect to which the me-
tric and electromagnetic field have the form
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ds®=2(1+ shuv) 2dudv - 2(1+ §k2Z)"2dzdz , (4.1)
F= (k)26 (1+ skuv) Pdundy - (1+ $k2Z)*dzadz],
(4.2)

where £>0 and ¢ are arbitrary constants. By means of
the coordinate transformation

u=v2x°% v=x{V2(1 -2,
2=V le™ cot(3ax® - 311),

where A= 3V%, we recover Robinson’s metric (1.2a) and
electromagnetic field (1.2b).

Note added in proof. Dr. H. Stephani has kindly
drawn the authors’ attention to a paper'” where the
Bertotti-Robinson electromagnetic universe is
characterized in the same way as Tariq and Tup-
per'® using properties of an embedding in a flat
six~dimensional space.
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The concept of coherence is analyzed in a system of interacting radiation and matter. Using the projection
technique, the reduced field density operator is found, and with it the first and higher order field
correlation functions are computed. It is proved that the inelastically scattered field is, for the most part,
incoherent in any order at any time interval after collision with an atomic ensemble, except some specific
time intervals and positions, where the order of coherence is determined by the atomic correlations

considered.

Correlations play a fundamental role in the concept of
higher order coherence in the Glauber sense.' The
present paper reports some results in exploring this
concept of coherence in a system of interacting radia-
tion and matter.

The question is whether an initially coherent laser
beam preserves its coherence (and if so, to what order)
after being inelastically scattered by an atomic ensem-
ble. The answer—as can be expected—given by this
paper is, in general, also negative, The scattered field
is incoherent to any order in most of the time intervals
after the collision at most of the points different from
the origin of the scattering system,

The scattered field is coherent, however, in some
specific time intervals and positions; the order of co-
herence in these cases is determined by the atomic cor-
relations due—-in the first approximation—to the dipole—
dipole interactions among the particles in the scattering
system. The analysis of these specific cases presents
considerable interest.

Let us consider an ensemble of N identical three-
level atoms (as particle system), ground state |g),
intermediate state |4), final state | f), interacting with
incident {exciting) coherent radiation (we shall only dis-
cuss the electric component)

= (7 fhw, 172 500 io _ o+ -ie

Eirit) =il5 ) eVaw0)e'’ - ai(0)e), 1)
£

where we use Glauber’ s notations''? and ¢ = (k.7 = wt).

The scattered field—after resonant Raman scattering
the atomic ensemble—is

- w 1/2,\ , 3 ‘o
E(r;t) =i E(ﬁ) ea,(0)e!*i — ap(0)e™ *4], 2)
k

4
with
(Pj = (Eg7j— wkt,»).

The necessary and sufficient conditions for coherence in
the above-mentioned sense are connected with some
properties—namely normalization and factorization
properties—of the jth order field correlation functions,
G (%4502 5%p5)

=te{pE 7 (x;) o0« BV () EP (xp00) 200 EW(epy)}, ()
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where x; = #,;1,) and E*”(x;), E*(x,) are respectively
the negative and positive frequency parts of E(r;;¢;) and
p is the density operator of the whole system in the
Heisenberg representation. We further suppose that all
of our detectors are fitted with polarizers and record
only photons polarized parallel to an arbitrary unit vec-
tor é. Thus

EC(x,)=2.E(x;), E™(x;)=2.E""(x;), (4)
However, to find the correlation functions G, we do
not need the density operator of the whole system. All
the information needed is contained in the reduced field
density operator o(t).

To find o(t) we use the projection technique, ®

mi’g—;—tl =Hp(t), (5)

with # the Liouville operator for the whole
Hamiltonian

H=Hp+H,+V, (6)
where

Hp =123 Wiy, (7N
and fk N

HAZI%;EINI; NF% 1) s @)

are the field and atomic Hamiltonians respectively.

If we let iy = (1lev| f) be the dipole matrix element
between the atomic states 1h) and 1), and we let L,
be the component of the dipole moment in the direction
of the electric field, the interaction Hamiltonian can be
written as

V=200 i alar| i) <f [n=ae| £) <Rl Al 9)

where the [, and |, are missing, because the field
induces radiative transitions between the states |k) and
| ) only, Converting (5) into the interaction picture and
then successively applying the tr, and /) operations on
it we have

090) _ _ i tr oyl (H A)o(t)
dt )
- trﬂ/ dr e Dyf(H o (), (10)
0
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where v is the Liouville operator for V{t), 1 =[1
—fH ) tr,] is a projector, with f(H ) =e®74/tr, e™*"4,
and tr, means trace over the atomic ensemble. This
non- Markoffian equation (10) is valid for all times and
for any orders in V(¢), and has in the second term on
the right-hand side a generalized collision operator
containing the memory of the system.

The solution of (10) up to the second order terms in
V() is performed elsewhere* and results in a reduced
density operator in the Heisenberg representation

- 2, - +
O'(Clk,a;,t)z‘ﬂzzz e (F/ HHk to [(B-F)/ Flayay
-2 ]

X Go(k(asat)’?), (11)

where kf=2(1, +n,), ne,n, =0,1,2, c+¢, Jy(k(a,a3)!’?)
are the zeroth order Bessel functions, and B and F are
F =7’72th a2 glwe ) g),

with g{w,) a weight function® and (gk), (gf) the atomic
correlation functions

(gh)=tr, 2 (lhxfl If><hl,——m—)

(13)

(gf)=tr, & (|h><fl lf><ht)

=1 ”'tr e”

=1

respectively.
Inserting (11) and (2) into (3) we have

;- 1
Gay; oo xag) =flxg; o "x“)EZ'} o (:} 1)1')

w @"L(B=F) /F)(m1) ﬂo(kvn +1), (14)

the jth order field correlation functions, where

f(x13‘°':x21)_ )1/2

(wk1 .« e wkz!
Xexpli(@uq +0e +@Ppym @y =rer = )]
xe-(k2/4)Ft. (15)
The necessary conditions for coherence in the Glau-

ber’s sense! are that the normalized correlation func-
tions all have unit absolute magnitude

G(n(x % )

nl:l{c (xnxf)i =1 6)

while the sufficient conditions are related to the factori-
zation property

CPxis.00. ;%)

|gm(x1; oo ;xZJ)’

=Cc,-*(x1)'"é—*(xj)é—(qu)"‘f(xzj), (17)
where £ (x;) are complex functions.

The normalized field correlation functions (16) com-
puted with (14) and (15),

kz
g xy;... 3"21):%}2 exp(_TF{(th1 +eve 1y
k¢ n
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=3ty +ees +t,)})

X exp[— Qg tees +Pgy= Q=2 = @;)]
n+1)eoefn+j—1)
X '
n
oU-DLB=F) [F1(ne1)
X (18)

yt(]l-i) ’

have in general an absolute magnitude different from
one, and the GY(x,;...;x,;) field correlation functions
don’t factorize into a product of complex eigenvalues
as it is required by (17), Thus for the most part of the
space—time after collision, neither conditions (16) nor
{17) are met in this resonant Raman scattering
problem.

Therefore, the conclusion—as it was expected—is
that the scattered radiation at most of the time intervals
after ¢; (incident time) and at most of the points dif-
ferent than ¥, (incident position) is in general
incohevent,

The scattered field is coherent, however, in some
time intervals and positions other than (v,;%;) depending
on the specific B and F values of the atomic correla-
tions considered. This can be seen by analyzing the be-
havior of the normalized field correlation functions
(18).

When the conditions (£;,q ++++ +#3;) =3 ++ 2 +1;)
and (@, ++++ + @) =(@; ++++ +¢,) are fulfilled in the
space—time after collision, the factor

(J-1)[(B=F) /Fl{n+1)

g ((]Iut) ’

can be equal to one, in the event that B« F, This means
that in some specific space—time points the scattered
field is coherent to some degree in the Glauber’s

sense,

1eee(n+5~1
Zn(rm‘- ) nj(n 7 )xe
n

When and where such coherent scattered radiation
can be found is to be determined by a thorough analysis
of our higher order correlation functions. Such an
analysis, and the detailed calculations of the correlation
functions involved will be published elsewhere,
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The reduced field density operator for an inelastically

scattered quantum radiation
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The projection technique used for setting a non-Markoffian differential equation for the reduced field
density operator is discussed, and a detailed solution of the equation is found.

In a recent paper® the author found the first and
higher order field correlation functions for an inelasti-
cally scattered quantum radiation, and discussed some
of its coherence properties. In order to extract the
relevant information from the jth order correlation
functions,

G(j)(xl:, .. :xzj) :tr{pE(')(fcl) e E("(x].)
XEW(x; ) B9 ), (1)

we needed the reduced field density operator in the
Heisenberg representation. This task was accomplished
by the so-called projection technique.? The outline of
this technique and the detailed calculations related to
the reduced field density operator are the topics of this
paper.

Let us consider the same ensemble of N identical
three level atoms interacting with a coherent radiation,
as in the previous paper.' The considered field, atomic,
and interaction Hamiltonians are

HF:ﬁ;wka;ak, {2)

HA:EGINH Nz:Z
. m=t

1)L s (3)

=g, h, f meaning ground, intermediate, and final
states, respectively, and

V=Zittyla|h)(f| = a0 ], (4)
where
We t/2_ ~
uhf:(_zhe ?y) I.th-e
with £
Frp=Chle7|f),

being the dipole matrix element between the atomic
states \h) and \f), and ¢ the electric field polarization
vector.

The density operator p{/) satisfies the equation

i agj“ =Hp(),

(5)

where # is the Liouville operator for the Hamiltonian
of the entire system

H=H,+H_.+V, (6)
meaning
Ho=[H,p]. (7

In the interaction picture (5) takes the form®
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Looxlt
m%:m(t), (8)

¢
where ¥ is the Liouville operator for the time dependent

interaction operator

V(t) = exp[(i/R)(H, + H)t]Vexpl- (i/h)(Hp +H,)t]. (9)
The reduced field density operator is now

o(t)=tr, x(£), (10)

where tr, means trace over the atomic ensemble.

At (=0 before the interaction is turned on, the system
is still considered split into an independent radiation
and an atomic ensemble, thus x(0) factorizes in direct
product

x(0)=0(0)f,(H,),

where

-BHy

e
:trAe'BHA (1)

folHy)

assuming the atomic ensemble in thermal equilibrium.
After the system is coupled, we can write the density
operator of the whole system in a convenient form

x(8)=f(H,)o(t) +n(), (12)
where
1) =0x () (13)

with ) =/)%=[1-7(H,)tr,] a projector in the operator
space of the entire system.

The following rules apply®:
o(t)=0*(1), x(O)=x"@),
Dx@)=n@), tr, x(0)= o),
O =n), tr,n(t)=0,
DfHDo()=0, tr,f(H,)=1,
DOH=H,D, tr A, f¢H,)=0,

tr, 4, m{t)=0.

To obtain the equation of motion for o(¢) let us apply
the tr, and /) operations on (8) successively, We have

(14)

2280y #,)00) + ), 1o

m%t—) =Dvf Ho(e) +Dynib), 16)

a coupled system of differential equations. Solving (16)
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with the initial conditions n(0)=/x(0)=
the solution in (16) we obtain

aslt)

5 =~ itraf (H,)o(t)

_trAy'/‘td'rexp(-z‘DyT)Dyf(HA)o(T)y amn
0

a non-Markoffian equation of motion for the reduced

field density operator. (17) is valid for all times and
for any orders in V(/) and has a generalized collision
operator containing the memory of the system in the

second term on the right-hand side.

In solving (17) we can easily remove the first order
term in V{¢) because the rules set in (14) and a simple
renormalization of the unperturbed energy levels,
which leads us to tr,yf(H,)=0, o(f) being already
independent of the tr, operation. The second order term
in V() contained in the collision operator of (17) is

trij:dTDyf (H)o(t)
:trA{V(t)_j:dT V(7)f (H,)o(7)

- V(t)j:drf(HB)o(T)V('r)}, (18)

where V(¢) is defined in (9), Inserting (9) into (18) we
have

trA)/j:dTDYf(HA)U(T)
:-kzuwu;,‘?k,rnz;l tr L[] as(e) = | £ 9h| e ()]
™S (H,)o(7)

xJJ(IT[(‘h)(f‘,ak -], a,

~ FEDID( RS | apln) = [ )R] )}, (19)

where a,(f) = a,(0) exp[ - i(w, — w, )] with fiw =€, —¢,.
Taking into account all the relevant commutation rules,
namely,

[”lna;‘]: Oklz' y tr, "’7><f1 :<f“l>: éfh: E]hxh] =1,
the only nonzero terms in (19) are

tr, v j:d‘rﬁyf (#H,)o(7)
= _ﬁzuhfu;hk§ % tr,
<{| ISl X E) j;fa;(na,,xr)a(rmr
=] s BN, fla
R W f H)J (Daif

ay(t)o(T)a, (1) d
Tyo(r)dT
~ KB} W FED RS |, L a (0)o(rat. (1 ). (20)

The summation over all the #' modes —which are
assumed to be closely spaced with a density g(w,)—can
be converted into integration,

2= [l

Performing the indicated integrals and inserting (20)
into (17) we have for the reduced field density operator

tdw,,.
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0 and substituting

§ [2,(0)0(1)a;(0) ~ a;(0)a, (0)o(t)]

+ Fla;o(t)a, — a,a;0(t)] (21)
with
B=11" iy, 117, 218 (w, ) (gh), (22)

F=n"u, 1, 2mg(w,Ngf).

The (gh) and (gf are the atomic correlation functions

Ha
(gh)=tr, 2 (lh)(fimlf)(”zt_{%_—_—(ﬁﬁ;{)))

1FC] ) .

(23)
- 8H,
(%’f)—trA (lhxf{mi%

Performing the indicated traces, the numerical
values of (gh) and (gf) can be easily obtained by a
relatively simple computer program for any value of N,
thus 8 and F are well-defined numbers.

Using the P representation® for o1},
. Tt * d*a
ola,a ’[): ol o ,[)'(1’)(01‘—;—7 (24)

we find from (21) a Fokker —Planck type differential
equation for the antinormal associated functions
’@r‘(a)(a’ (Y*,If),

aola) 12
v :{G%a F—— a* +Fa;aa*}aa)’ (25)

and introducing new variables o —
(25) becomes

glad
il :{(G—F)[l +lx% +1yi]

(x+2y), a*=(x~iy),

at 27 8x "2 7%y
2 2
+ E 3_2 + 8_2 E(a)-
4\ax® oy (26)
The solution of (26) is sought in the form of°;
0%0) = pmM TR (P 12N (), @n

Thus for N(x,y) we immediately have
°N N
e b e B2
Tt T N =0 (28)

with 4 =2(G ~ F)/F and the condition that £*=4)/F
should be an integer. Letting N=X{(x)¥{(y), the general
solution of (28) is

40 2. .2.1/2
Nlx,y)= [ eiten i,

which leads us to
N(x,y) =g, r). (29)

Therefore, the antinormal associated function T, ¥,
t) is

0,8’ = expl— (F/4)k*(] expl[~(G - F)/F|(+* + y?)}
xnﬂo(k 7) (30)

with r=(x*+y )”2, A= (F/2)(m +m )_(F/4 &2,
m.,m,=0,1,2,-+-, and ¢,(kr) the zeroth order Bessel
functlons
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Finally from (30), because of (24), we obtain the
sought solution of (21) by replacing all the « by a, and

all the o* by a;, and putting them in antinormal
order

- 2
o(ak,a;,t):kzz)'? e~ (F/OR?t] {1~(G-F) / Fl)ape}

% Jolklaay)’?). (31)

This is the reduced field density operator for the system

under consideration up to the second order terms in V(¢).
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A consequence of the invariance of Biot’s variational

principle in thermal conduction?

K. E. Lonngren®

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706

H. C. S. Hsuan

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540

The invariance of Biot’s variational principle in thermal conduction suggests that this variational principle
can be formulated in terms of a self-similar variational principle. This work presents such a derivation and

applies it to a thermodynamics example.

In a series of papers which have been recently sum-
marized in a book,! Biot has derived a variational prin-
ciple (“BVP”) for thermal conduction systems and has
applied it to several problems.® The principle is quite
general in philosophy, and one could easily think of
finding applications for it in such diverse fields as ther-
modynamics, plasma physics, distributed transmission
line calculations, fluid dynamics, etc. We therefore
feel compelled to examine some of the implications of it
to ascertain if some important computational techniques
can be uncovered. It turns out that the property of in-
variance allows one to cast the original BVP which is in
spatial and temporal dependent variables x and ¢ re-
pectively into a self-similar BVP which is in terms of
the self-similar variable £ =£(x, ).

Following Biot,! we write the law of conservation of
energy as

c0=~H, 1)

where c is the heat capacity per unit volume, 6 is the
temperature, and H is the heat displacement, We use
subscript notation for differentiation. Equation (1) must
also be satisfied for any variation

cb0=— (8H),. 2)
Heat conduction is given by
6, +(1/R)H, =0, 3)

where k is the thermal conductivity.

Multiply (3) by the variation §H and integrate over the
volume of the medium (we shall assume a semi-infinite
volume which extends from x =0 to x =«):

f:[ex +(1/k)H,10H dv=0. @)
Integrating the first term by parts yields

J 1= 60H, + (1/R)H 0 H)dx = - 66H]] . (5)
Eliminate 0 between (1) and (5):
S/ OBBH, + (/R 5 HYdx = (1/ ) HBH | 6)

This is the BVP.

#gponsored in part by the NSF Grant No. ENG 76-15645,
USERDA, Contract No. 11-1-3073, and the United States
Army under Contract No, DAAG29-75-C~0024,

Y0On leave from the University of Iowa,

357 J. Math. Phys. 19(2}, February 1978

0022-2488/78/1902-0357$1.00

The BVP is amenable to treatment by self-similar
techniques, in particular to a transformation with a
one-parameter Lie group defined by

H=a%H, x=a’% t=a', (1)
where a is the parameter and «, 5, and y are constants
which are to be determined. It is known that the invari-

ants of this group are identical to the self-similar vari-
ables?™

PE)=H(x,t)/t*'" and t=x/t8'7, (8)

Substituting (7) into the BVP (6), we obtain
@ [ “HybHzdx + a5 [ “HpoH di = " I;8H|, ©)
where we have assumed ¢ and % are constants, This is
probably not a severe limitation as we have treated non-
linear and inhomogeneous partial differential equations
previously.®%, The variables have also been normalized
such that ¢ and 2 become one. We now make use of the

invariance property of the BVP, The transformation is
invariant under (7) if

20 -B=2a +B-vy (10)
or /y=4%4.

Substituting the invariants (8) into (6) and including
the results of (10), we write

S 980 +f [(@/N6 - £ 6/ 200dE = 6,50
(11)
The first term can be integrated by parts to yield
S e +E0/2- (/)0 Jo0ds =000, - 080]] .
(12)

In transforming from the BVP to the self-similar
BVP, we note that there has been a “consolidation” of
boundary conditions, namely H(x,¢=0) and H(x =, {)
have consolidated to ¢(f =«). For the case where the
variation is zero at the boundaries, the resulting
Euler—Lagrange equation is found:

4’u+£¢g/2— (a/V)d):O- (13)

The solution of this is known and can be written in terms
of complementary error functions of various order.”
The order is determined by the parameter a/y.

The final solution can be written by combining (8),
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(10), and this solution of (13). The choice of a/y will

be dictated by, say, a second boundary condition at x =0
or a conservation law. For example, the requirement
that H(x, #) be time independent at x =0 specifies from
(8) that @/ =0 and the final result is

H(x,t)=Aerfe(x/2/7). (14)

The requirement that 6(x, {) be time independent at x=0
specifies from (1) and (8) that o/y =2, and the final re-
sults is in terms of the integral of (14). Finally for
cases where a congervation law such as fde:const or
f 6dt = const must be satisfied, we note that this con-
servation law must be invariant under transformation,®
Applying (7) to either of these, we find that a/y=-1

and the final result is

H= 24/ 7T )" /4, (15)

In conclusion, we have shown that the invariance of
the BVP allows one to cast the original BVP into its
self-similar form immediately. This application of
self-similarity to variational calculations does not
seem to have been noted previously. We observe that
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by applying the techniques at this variational stage of a
calculation reduces the computational work in self-
similar calculations.
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A kinetic formulation of the three-dimensional quantum
mechanical harmonic oscillator under a random perturbation
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Frederick D. Tappert

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012

(Received 18 July 1977)

The behavior of a three-dimensional, nonrelativistic, quantum mechanical harmonic oscillator is
investigated under the influence of three distinct types of randomly fluctuating potential fields.
Specifically, kinetic (or transport) equations are derived for the corresponding stochastic Wigner equation
(the exact equation of evolution of the phase-space Wigner distribution density function) and the stochastic
Liouville equation (correspondence limit approximation) using two closely related statistical techniques, the
first-order smoothing and the long-time Markovian approximations. Several physically important averaged
observables are calculated in special cases. In the absence of a deterministic inhomogeneous potential field
(randomly perturbed, freely propagating particle), the results reduce to those reported previously by

Besieris and Tappert.

1. INTRODUCTION

In a previous paper,! referred to in the sequel as
Paper I, kinetic equations were derived for the stochas-
tic Wigner equation (the exact equation of evolution of
the phase-space Wigner distribution density function)
and the stochastic Liouville equation (correspondence
limit approximation) associated with the quantized non-
relativistic motion of a particle described by a stochas-
tic Schréodinger equation having a deterministic back-
ground potential field independent of the space and time
coordinates. It is our purpose in this paper to lift the
latter restriction and investigate specifically the be-
havior of a three-dimensional quantum mechanical

harmonic oscillator experiencing a random perturbation.

Consider the stochastic Sehrddinger equation

.y 72

t>1, X&R3, (1.1a)
Ho(x, -inl ta ——fl—2v2+V(x £ (1.1b
op 4 ax7 i - 2”] s 50)5 . )
P(x, ty; o) = iy (X). (1.1c)

Here, the Hamiltonian H,, is a self-adjoint, stochastic
operator depending on a parameter o €A, (A, F, P)
being an underlying probability measure space, In addi-
tion, ¥(x,¢; o), the complex random wavefunction, is an
element of an infinitely dimensional vector space H,
and V(X,{; @) is the potential field which is assumed to
be a real, space- and time-dependent random function.

In the course of this work we shall deal explicitly with
the following three distinct categories of the potential
field:

(i) VX, b a)=zkx’+ VX, £ a), (1, 2a)
(i) VX, ¢ a)=3kx1+6G(; o), (1. 2b)
(iii) V(x,7; a)=3k[x— adH(t; a)], (1. 2¢)

where x = |X{, %k is a positive real constant number, and
& is a fixed vector quantity. The first category corre-
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sponds to a linear harmonic oscillator immersed in a
zero-mean, space- and time-dependent, random poten-
tial field 6V (X, #; ¢); the second one is the case of a
harmonic oscillator whose frequency is modulated by
the zero-mean, time-dependent, random field 3G{¢; a);
finally, the third type of potential is associated with a
harmonic oscillator whose equilibrium position is per-
turbed via the zero-mean, time-dependent, random
function 8H(¢; o), (This is also closely linked to the
Brownian motion arising from a randomly forced
harmonic oscillator, )

The random quantum mechanical harmonic oscillator
problem corresponding to potential fields of types (ii)
and (iii) has already been investigated extensively by
several workers under specific restrictive assumptions
regarding the random processes §G(¢; o) and 8H{¢; o), We
cite here the early treatment of the Brownian motion of
a quantum oscillator by Schwinger, 2 and the quantum
theory of a randomly modulated harmonic oscillator by
Crosignani ef al,® and Mollow. * A more complete ac-
count of the statistical analysis of the quantum mechani-
cal oscillator, with applications to quantum optics, can
be found in the recent review article by Agarwal,®

Besides its generic significance in quantum mechan-
ics, the random harmonic oscillator is of fundamental
importance in other physical areas since it provides a
dynamic model incorporating salient features common
to all of them. For example, Schridinger-like equations
of the form (1.1) and (1. 2) play a significant role in
plane and beam electromagnetic and acoustic wave
propagation. They are usually derived from a scalar
Helmholtz equation within the framework of the
parabolic (or small-angle) approximation. Statistical
analyses of optical wave propagation in randomly per-
turbed lenslike media have been undertaken by
Vorob’ev, ® Papanicolaou ef al, ,” McLaughlin, ¢ Beran
and Whitman, ® and Chow, 1 Along the same vein, start-
ing from a space—time parabolic approximation to the
full wave equation, Besieris and Kohler!! have recently
considered the problem of underwater sound wave prop-
agation in the presence of a randomly perturbed
parabolic sound speed profile.
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It is our intent in this paper to present a unified
stochastic kinetic analysis of the random harmonic
oscillator, which is equally applicable to the three
types of potential field in (1, 2), without imposing physi-
cally unjustifiable restrictions on the random processes
6V, 8G, and 6H. Special emphasis will be placed on the
additional effects contained in our formulation as com-
pared with previously reported results. Finally, it
should be pointed out that although the discussion in this
paper is restricted to the quantum mechanical random
harmonic oscillator, the main results are also applica-
ble to other physical problems by virtue of the state-
ments made in the previous paragraph.

2. THE STOCHASTIC WIGNER DISTRIBUTION
FUNCTION

The phase-space analog of the equal-time, two-point
density function for a pure state,

p(x27 Xy, £ 0)= d)*(xb £ 0)¢(x1, t; Q/),

is provided by the Wigner distribution function which is
defined as follows!?:

f%,p, t; @)= @ui)? [ ;dy explip-y/h)
Xp(X+3y,X- 2y, f; a).

2.1)

(2.2)

This quantity is real, but not necessarily positive
everywhere, It can be shown {(cf. Appendix A; also Ref.
13), in general, that |f(X,p, {; @)l < (#r)™ for any
realization o ¢ A, Provided that f(X,p, {; ¢) is normal-
ized (to unity), this means that the Wigner distribution
function is different from zero in a region of which the
volume in phase space is at least equal to (#7)3, Hence,
f(x,p, ;&) can never be sharply localized in X and p.
This situation is a reflection of the uncertainty
principle,

The total wave energy and wave action are given in
terms of the Wigner distribution function as follows:

(2. 3a)
(2.3b)

E= [ qdx [ sdpH(x,p, t; ) (X, D, ; @),
A= [ gdx [ 3dpfix,p,1; a),

Here, H(X,p,!; @) is the Weyl transform of the operator
H,, and is given explicitly as

HE,D,15.0) = 5o 2+ V&, 0), b= b, (2.4)
The total wave energy is not conserved since the poten-
tial field is assumed to be time dependent, On the other
hand, the total wave action is conserved because of the
self-adjointness of the Hamiltonian operator, a proper-
ty satisfied by the three types of potential fields in
(1.2).

The time evolution of the Wigner distribution function

is governed by the equation

L 1%, b, 1 )= LF (%,p, 55 @), (2. 52)

0
Lfx,p, 5 0) =~ = p. 2 fix,p, 15 0) + (K, b, 15 ),

(2. 5b)

The potential-dependent term on the right-hand side of
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(2. 5b) can be cast into the following three useful
representations:

(i) 6fx,p, t;a)= [ 3dp’ K(X,p- ', {; ¢)f(X,p’, 1; @),
K(x,p,t; o) = @) (2rh)™ [ ;dy exp(ip - y/h)
x(V(x- 2y, 0) - V(x+3y,1; 0)];
(2. 8a)
(i) 6f(x,p, t; @)= (@) @ui)? [ 3dy explip- y/h)
Xp(X+ 2y, X~ 3y,1; @)
x[V(x- iy, 0) - V(x+ 3y, 4 0)l;
(2. 6b)
(iii)

Gf(xy P t; a)= V(x’ 4 a) %

ML _
i3 (55 )50

We shall refer to the exact equation of evolution of
f(x,p,!; a) as the stochastic Wigner equation,

(2. 6¢)

It is seen from (2. 6¢) that in the correspondence limit
(r—0),

of(x,p, 4 a)= a—V(x,t; @) - a—f(x,lo,t; a)+ o).
X ap

2.7

Within the limits of this approximation, we shall refer
to (2.5) as the stochastic Liouville equation.

We shall next list the specific realization of
6f(x,p, {; @) corresponding to the three choices of the
potential field V(x,#; @) in (1.2):

) &x,p,l0)= (kx' ;—p + aixﬁV(x,t;oz))
Xf(x,p,t; o) +O(F®); (2.8a)
ii ey =[x 2 ) L3
(ii) Qf(X,D,l,a)~<kx o + kG a)x ap>
X fix,p,l;0); (2. 8b)
(iii) or(x,p,¢; a)—(kx- 2 —kOH{t; a)a - a_)
Py li0)= p ; p
Xf(x,p, t; @) (2. 8¢c)

It should be noted that the last two expressions for
6f(x,p, t; @) are exact. This is due to the special forms
of the representations for V(x,#; a) in (1.2b) and (1.2c).

3. GENERAL EQUATIONS FOR THE MEAN
WIGNER DISTRIBUTION FUNCTION

The stochastic Wigner distribution function f and the
operator L [cf. Eq. (2.5a)] are next separated into
mean and fluctuating parts:

f(x’pvl; a):E{f(x’pyl; a)}+ 5f(x)p) t; 0!),
L=E{L}+5L.

(3.1a)
(3.1b)

On the basis of the first-order smoothing approxima-
tion, 1"~'° one obtains the following general kinetic equa-
tion for the ensemble average of f:
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(aa_t - E{L})E{ A%, 0,15 @)}

= ft dr E{sL(t) exp[TE{L}]5L(t - )} E{f(x, D,/ - T; &)}

0

(3.2)

In deriving (3.2) it has been assumed that 5f(x,p,0; a)
=0 and that E{L} is independent of the time variable.
[The latter condition is satisfied for the three types of
potential fields prescribed in (1.2)]. This kinetic equa-
tion is uniformly valid in time. The right-hand side of
(3.2) contains generalized operators (nonlocal, with
memory) in phase space.

Various levels of simplification can be obtained by
introducing additional constraints. For example, the
long-time Markovian results in the simpler kinetic
equation

(2 - 5le)) Utx, s 1)
= f wdT E{5L () exp[TE{L}]6L(t - 7)}

[¢]

xexp[- TE{L}1E{f(x,p,; @)} (3.3)

This particular functional form is due to Van Kampen, *°
1t should be pointed out, however, that this expression
is identical to Eq. (3.3) of Paper I. A detailed discus-
sion of the long-time Markovian approximation can be
found in Refs. 20 and 21. Here, we mention simply that
in addition to the usual assumptions entering into the
first-order smoothing approximation (cf. Refs. 17—19),
the derivation of (3.3) presupposes that E{f} vary slow-
ly on the scale of the correlation time of §L.

Having established an expression for the mean Wigner
distribution function by solving either of the above
kinetic equations, physical observables, such as the
average probability density, the average probability
current density, the centroid of a wavepacket, the
spread of a wavepacket, etc., can be found by taking
appropriate phase-space moments (cf. Paper I).

If the mean Wigner distribution function is normalized
to unity, i.e.,

Radx\[ﬂsdpE{f(x;p’t;a)}:1’ (3.4)
the following general relationship holds:
D0 =@ah® fodx [odp [El/x,p, ;)lP< 1. (3.5)

[A proof of (3.5) is outlined in Appendix B. ] Equality
holds if and only if E{f}is a “pure” state. Otherwise,
E{f} is said to represent a “mixed” state, and D (which
we shall call the degvee of cohevence) is less than unity.

4. KINETIC THEORY FOR THE STOCHASTIC
WIGNER EQUATION

The results of the previous section are specialized
here to the stochastic Wigner equation (2.5) correspond-
ing to the potential field given in (1.2a), viz., V(x,¢; o)
=3kx® + 5V(X,t; a). It is convenient to use for this
purpose the representation (2, 6a) for 8A(x,p,!; a).

A. The first-order smoothing approximation

The mean and fluctuating parts of the operator L in
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(2.5) are given explicitly as follows:

1 d 0
. 2 .2 4.1
mp ax+kx ap’ ( )

SL = [,qdp’ 6K(x,p -p',(;a)(*),
SK(X, P, t; @)= (i) {2n)° [ 5 dy explip - y/F)
x[6V(x - 3y,t; a) - 6V(X+3Y,4; 0)].
(4.2Db)

E{L}=-

(4.2a)

Introducing (4.1) and (4.2a) in (3.2), we determine the
following equation for the ensemble average of the
Wigner distribution function within the framework of
the first-order smoothing approximation:

9 1
(at _p aX —kx- )E{f(x py[ o l'_eE{fx P 5 a)}’

(4.3a)
OE{f(x,p,1; @)}
= fot dr fdep’ fR3dp” E{pK(x,p-p’,t; o)
XBK[X cosw,T — (P’ /mw,) Sinw,T, Xm w,Sinw,T
+p” cosw,T -p”,t - 7; aJIE{f [X cosw,T
—(p’/mw,) sinw,T,p", ¢ =T}, (4. 3b)

where w,=(k/m)*/?. In deriving this equation we have
made use of the well -known propagator property

oo (Lo on o) eeo

= g[x cosw,T - (p/mw,) sinw,T, Xmw, sinw,T +p cosw,T].

(4.4)

For the sake of simplicity, we shall assume that
dV(x, t; @) [which enters into (4. 3b) via the defining
equation (4.2b)] is a spatiallv homogeneous, wide-sense
stationary random process, viz.,

Iy, ) =E{sV(X, ;) 6V{x -y, ¢t ~-T; a)}. (4.5)

The correlation function is even in both y and 7. In our

subsequent work we shall require the spectrum [i.e.,

the space —time Fourier transform of Iy, 7)], viz.,
T(p,u) = F{T(y, 7)}. It is related to the space—time

Fourler transform of §V(x, #; @), viz., 6%(p,u)

=F {6V(x,t; @)} in the following manner:

E{6V(p, u) 6V(p’ ')t = 6(p + p' )5l + 0 )B(p, ). (4.6)

It should be noted that T(p,«) is real, nonnegative, and
even in both p and #.

The operator © on the right-hand side of (4.3a) can
now be evaluated explicitly. The resulting kinetic equa-
tion for the mean Wigner distribution function assumes
the following form:

d 1 i
(aﬁ Lo i 2)elrtep, o)

fdp deQx p,p, T)( { [xcoswo‘f-—g(p+p)

X
mwyg

sinw,T, —3(p —P’) + xmw, sinw,T + 2(p +p’)

XCoSw,T, ! —T; a]} —E{f[x coOSw,T ~3(p+p")
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X

oo SinweT, + 3P ~p") +Xmw, sinw,7 +3(p+p’)
0

XCoSw,T,! - T, a] }>,

Q(x,p,p’, )= (207 f dyT(y, )

R3

(4.7a)

X cos‘:y {p-p)/Ht+(p-p")

1
X (x cosw,T — 3(p+p’) o sinwT — x)/ﬁ]
0
(4.7p)

This rather formidable integrodifferential equation con-
stitutes a uniform approximation, valid for any value

of time, from which short and long time limiting cases
can be considered. (The latter will be dealt with in de-
tail in the following subsection.) The right-hand side of
(4.7) contains a generalized operator (nonlocal, with
memory) in phase space due to the presence of random
fluctuations in the potential field, as well as to the in-
teraction of these random inhomogeneities with the de-
terministic profile of the potential field. No special as-
sumptions concerning the scale lengths of the potential
fluctuations have been made in deriving (4,7). The only
condition (which is implicit in the first-order smoothing
approximation) is that the potential fluctuations be suf-
ficiently small. Finally, it should be noted that in the
limit w,—~ 0 (absence of deterministic inhomogeneities),
(4.7) coincides with Eq. (4.5) of Paper I,

B. The long-time Markovian approximation

By imposing additional restrictions, the kinetic equa-
tion (4. 7) can be simplified considerably. The long-
time Markovian approximation [cf. Eq. (3.3)] yields the
following expression:

a 1 2 2 N
(a—[ * }}Ip 12). 4 —kx ap>E{f(x; p”: a)f

— [ @ w2 EL B, 1 o0k - B, 5 0,

R3
(4.8a)
wx,p,p’) = % / dr f‘(p -p,7) cos[(p -p’)- (xcoswo'r
[

’ 1 .
~z(p+p )m% sinw,T —x)ﬁz'],

where f‘(p, T) is the spatial Fourier transform of the
correlation function I{y, 7).

(4.8b)

Equation (4. 8) has the form of a radiation transport
equation, or a Boltzmann equation for waves (quasi-
particles in phase space). The expression for the
transition probability [cf. Eq. (4.8b)]is space-depen-
dent (in contradistinction to the case of a potential field
having a constant deterministic part), and obeys the
principle of detailed balance, viz., W(x,p,p’)
= W{x,p’,p). The latter implies conservation of prob-
ability (total mean action).

The integration over 7 on the right-hand side of
(4. 8b) can be carried out explicitly resulting in the
following more revealing form for the transition
probability:
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Wx,p,p)= 25 W, (x,p,p'),

n==oo

2 b
W.(x,p,p') = ,ﬁﬂ J, (%) cos (ﬁ: -n g—){cos [n(é + 72—T>]

X f(p -p’, nliw,) — sin[iz (6 + g)]

(4.9a)

f‘,,(p —-p’, nfiw,) }, (4. 9b)
a=1[x-(p-p) P+ [(p*-p)/Cmwy) P2, (4.9c¢)
b=x-(p~-p), (4.94d)
S=tan - 2mwyb/(p? —p'H)]. (4.9e)

dJ, in (4.9b) denotes an ordinary Bessel function of the
nth order, and I(p —p’,n/w,) is the Hilbert transform
of the spectrum I(p —p’,n%w,) with respect to the sec-
ond argument, viz.,

. 1 f* (-, w)
(-, nlw,) = nP _wdww—nh'wo .

The representation of the transition probability W in
(4.9a) as an infinite sum is a manifestation of the dis-
crete nature of the quantum mechanical stochastic
harmonic oscillator, The term W, for example, can
be interpreted as the transition probability of the scat-
tering event that changes the energy of the particle by
an amount equal to n7w,.

(4.10)

If the correlation function I(y, 7) decreases rapidly in
T, so does the spectrum I'(p, ) in #, and its Hilbert
transform T;,(p, #) with respect to its second argument.
Under these conditions, since the Bessel functions and
the sinusoidal terms in (4. 9b) are bounded, it is possi-
ble to approximate the transition probability W in (4. 9a)
by a sum of the first few terms, i.e.,

N

W=7, W

n=-N

s (4.11)
where the integer N can be estimated from our knowl -
edge of the correlation fime of the random process
8V(x, 7 a).

It is clear from (4. 8b) that in the limiting case w,—~0
(stochastically perturbed free particle),

9 e ~ 2 ’2
W(p,p') = = /(: drT(p-p’, 7) cos[r(ﬁ; - %) Pi],
(4.12)

which, upon integration, yields the following expression
for the transition probability,
, 27 2 . pE o p”
Wip,p')= + F<p—p, = om (4.13)
[cf. Eq. (4.7), Paper I|. The same result can be also

obtained from (4. 9) provided that the operations lim, .,
and infinite summation are not interchanged.

We shall close this subsection with the following re-
mark: If the lower limit in the integral on the right-
hand side of (4.8b) were replaced by — (this corre-
sponds to the specification of initial data at /= —~ in-
stead of /=0), the expression for W, in (4.9b) would
be modified as follows:
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123)co( -n3) oslo(o+ )]

W,,(x, p, p’) = —}f—
(4.14)

X f‘(p -p’, nhw,).

The terms in (4. 9b) proportional to the Hilbert trans-
form Tp(p ~p’, nHiw,), which are absent in (4,14), can
be interpreted as representing the effect of “switching
on” the interaction between the random fluctuations of
the potential field and the inhomogeneous deterministic
background at the finite time #=0. In the special case of
a potential field with a constant deterministic part, one
has the relationship

1
WLTMA

to==c0

WLT™A (4. 15)
for the transition probabilities corresponding to initial
data prescribed at {,=0 and {,= -, respectively.
(LTMA is an abbreviation for the term long-time
Markovian approximation. )

C. Kinetic equations in special cases

We shall derive here the explicit form of the kinetic
equation in the long-time Markovian approximation
limit for several special types of the random function
SV(x,/; a).

Case (i): 8V(x,{; @) has d-function correlations in
time,

Let Ty, 7) = ¥(y)6(7). It follows, then, that I'(p,u)
= v(p), where y(p) is the Fourier transform of y(y). The
transport equation (4. 8) specializes in this case to

a KA
(a; ;p - kx- ——)E{fxp,z,a)}

= / dp’ W(p, p' E{f(x,p’, ; a)} - E{/(x,p,; 2)}],
RS
(4.16a)

W(D,P’)=;;—2‘?(p~p’). (4.16b)
The right-hand side of (4.16a), with W given in (4. 16b),
is identical to Eq. (5.1) of Paper L It is, therefore,
due solely to the random fluctuations of the potential
field, The terms in the more general kinetic equation
(4. 8) arising from the interaction of the deterministic
profile and the random fluctuations of the potential field
are completely eliminated in this special case.

The spectrum %(p) is real, nonnegative, and even. As
a consequence, the transition probability W(p,p’) [cf
Eq. (4.16b)] is real, nonnegative, and obeys the
(detailed balance) property W(p,p’)=W(p’,p). The
latter implies conservation of probability (total mean
action). On the strength of the principle of detailed
balance, together with the nonnegativity of the transi-
tion probability, it follows, also, that the degree of
coherence introduced in Sec. 3 is a monotonically de-
creasing function of time, viz., (d/dt)D{{) < 0.2

The scattering rale (also called the extinction coef-
Jicien! or collision frenquency) is defined in general as

P)= [ 3dp’ W(p,p’). (4.17)

In the case under consideration here, the scattering
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rate is independent of p and is given by

1
V:i_i_z '}’(O). (4.18)

Using this result, (4.16) can be rewritten in the follow-

ing form:
9 1 d ?
(5 + 20 s~ 2+ g 1O BB, )
1

= / ap'#(p - p)ELAX, ', ¢ @)}

RS

(4.19)

Starting from the convolution-type integro-differential
equation (4, 19), with the prescribed initial condition
E{f(x,p,0; a)}=f,(x,p), it is possible to determine a
Green’s function G(x,x’,p,p’, ) such that*

E{f(x,p, i )}= [ od® [ dp’ Gx,x',p, 0, t),(X',p").
(4.20)

This is a useful expression because, for specific statis-
tics ¥(y) [or, equivalently, $(p)] and initial data f;(x, p),
physically important averaged observables can be found
directly from (4.20) by taking phase-space moments,
without having to solve first explicitly for the mean
Wigner distribution function. (This procedure is illu-
strated in Appendix C.)

It can be shown by means of the Donsker —Furutsu—
Novikov?®*~2® functional method that for a potential field
fluctuation 6V(x,¢; @) which constitutes a 6-correlated
(in time), homogeneous, wide-sense stationary, Gauss-
ian random process, the kinetic equation (4, 16) for the
mean Wigner distribution function is the exact statisti-
cal equation. (The proof will not be presented here
since it is similar to that given in the Appendix of Paper

1)

Case (ii): 6V(x,#; @) has no time dependence.

Assuming that T'(y, 7)=¥(y), we have f(p,u):?(p)é(u).

The transition probability W becomes

9 -
W(X,P,P'):F}’(p—p')/ d7cos

0

asin(w,7+8)-b
;Z 3

(4.21)

where a, b, and 8 are defined in Eqs. (4.9¢)—(4.9e).

It must be pointed out that the condition for the applica-
bility of the long-time Markovian approximation [i. e.
E{f} should vary slowly on the scale of the correlatlon
time of 6V(x,¢; )] is clearly violated in this case. In
this sense, (4.21) should be considered only as a for-

mal result. Finally, in the limit as w,—~ 0, (4,21) re-
duces to Eq. (5.4) of Paper I, viz.,
, 77 . I)Z P,z
w =27
(p,p")= = Pp-p')0 (Zm 5 )- (4.22)

Case (iii): 6V(x,!; @) has 6-function correlations in
space.

_ Let T'(y, 7)=(2a%)*5(y)¥(7). It follows, then, that
I'(p,u)=7(u), where ?{u) denotes the time Fourier
transform of ¥(7). The mean Wigner distribution func-
tion evolves in time according to (4. 8a), with the
transition probability given by

Besieris, Stasiak, and Tappert 363



0

W(x,p,p')= 2 (4.23a)

W (x,p,p’) = —J (r>cos(; n%){cos [n <6 + %)]
X P(nkiw,) ~ sm[ <6 + 2>]?H(nﬁwo)}.

(4.23Db)

¥4 liw,) stands for the Hilbert transform of the tem-
poral spectrum $(nfiw,) [cf., also, Eq. (4.10)].

W, (x,p,p"),

5. KINETIC THEORY FOR THE STOCHASTIC
LIOUVILLE EQUATION

The results of Sec. 3 will now be specialized to the
stochastic Liouville equation, i.e., Eq. (2.5), with the
specific realizations of 6f(x,p,(; @) given in (2. 8a)—

(2. 8c).

A. V(x, t;o) = 1/2kx? + §V(x, t;00)

The mean part of the operator L in (2.5) is given in

(4.1). On the other hand, the fluctuating part of L as-
sumes the following form,
L= -2 8V(x, 45 @) -~ + O(?) (5.1)
ax e ap ) )

On the basis of the first-order smoothing approximation
only [cf. Eq. (3.2)], one has the kinetic equation

0 1 ¢ g
(a_t +—pr o — kX $>E{f(x,p,t, a)}

:;5 [/ dTE{a—a° V(x,t: a) GV(x' b= fx)}

0

Xaip,E{_f(x’,p’,[—T;a)}], (5.2)
where
%X’ =xcosw,T - (1/mw,)p sinw,7, (5.3a)
P’ =P cosw,T + mw X sinw,T. (5.3Db)
By virtue of the homogeneity and stationarity of the
random function 8V(x,¢; o) (cf. Sec. 4 A),
E{iGV(x,t: a)i, BV(X', 1 ~T; a)}: i T(y, ),
X oxX oy oy
(5.4)
where
y=x-x" =x(1 - cosw,T) + (1/mw,)p sinw,T. (5.5)

Finally, Eq. (5.2) can be written as follows:
<i Lo 2 ik

of mp ax )E{jx P, 4 @)

:%- [f:dr 4dy6<y—x(

2 sinw,7 9 6
X oae 0
( 575y T(y, T)) ( mw, X CosSw,T ap>

1 .
XE(f|Xcosw,T — P sinw,T, peosw,”

+mwXsinw,7,f - T; oz) }]
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)

(5.6)

For random fluctuations which are statistically homo-
geneous, wide-sense stationary, and 6 correlated in
time [I'(y, 7) = ¥(y)8(7)], the time integration on the
right-hand side of (5.6) can be carried out explicitly,
with the result

(a%-+ip 75 ~ kX >E{f(xp,ta)}

m

2 d .
25'[D'$E{f(x5p,t~a)}]y (573,)

82
D= zllm <,‘y 8y (Y)>.

The right-hand side of this transport equation is identi-
cal to that in Eq. (6.2) of Paper I, which was obtained
under the assumption that w,=0. This shows that there
is no interaction between the deterministic potential
field profile and the random variations under the pres-
ently specified statistical properties. It should also be
noted that if, in addition to the prescribed properties,
oV(x,!; o) is a Gaussian process, the kinetic equation
(5. 7) is the exact statistical equation for the mean
Wigner distribution function within the stochastic
Liouville approximation. (The proof of an analogous
statement can be found in the second part of the
Appendix in Paper I,)

(5. Tb)

Equation (5. 7) is a variant of the equation of Kva-
mers.?® A fundamental solution for it can be found by a
method introduced by Wang and Uhlenbeck, ¥ Equation
(5.7) can be also obtained from (4.19) or, equivalently,
from the three-dimensional analog of (Cla) (cf.
Appendix C). If, in the latter, the term ¥(%u) is expand-
ed to order 7%, and an inverse Fourier transform is
performed with respect to variables u and q [cf. Eq.
(C2)], the ensuing transport equation is identical to
(5.7). As a result, the expressions for the first- and
second-order averaged observables listed in Appendix
C remain unchanged. However, third- and higher-order
observables calculated on the basis of (C1) will contain
terms of at least first order in 7%, which will be absent
in the corresponding Liouville approximation.

In the long-time Markovian approximation, (5.2)

simplifies to

212
ETEMS e
a2,
op

—kX- >E{f(x p,f; )}

= (D‘“(x p)- —I—, +D®(x,p) -

)E{fx p,t; o)l

{(5.8)

This is a Fokker —Planck equation in phase space. The
space- and momentum-~dependent dyadic diffusion coef-
ficients are given by

D‘”(x, p) —
o 1 .
f daT fdy é(y - x(1 = cosw,T) - P Smon)
o R3 Wy
82
X ( 3y ay F(y,‘r))coswor, (5. 92)
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D®(x,p)=
) dr dy oy - x(1 —cosw,7) ~ sinw T)
»/(: fe3 y <Y 0 mw, P 0
82 sinweT
X (_ oy oy Ty, T)) mw, (5. 9b)

Equation (5. 8) can be derived by applying the long-
time Markovian approximation directly to the stochastic
Liouville equation. Alternatively, it can be derived
from the transport equation corresponding to the long-
time Markovian approximation of the stochastic Wigner
equation [cf. Eq. (4.8)] under the restriction that
8V (x,{; ) varies slowly in space. This can be done by
following the method used by Landau to derive the
Fokker —Planck equation for a plasma from a Boltzmann
equation (cf. Paper I and Ref. 31).

B. Vix, t;a) = 1/2kx? [1+6G (¢t:a)]

The exact stochastic Wigner equation assumes in this
case the form

2 1 bl i
(a_z + P 3 —kx- 55>f(x,p,t, @)

— kG )X - -a%f(x,p,t;a). (5. 10)

One has, then, in the first-order smoothing
approximation,

2 1 0 0
(5 e oz e 5p) UG

_ 2_3_. I,_a_ r o .
=k o [[d'rl"(f)xx ap,E{f(x P ,t—T,a)}],

(5.11)

where T'(7)= E{6G(t; a)6G(t - T; @)}, and x’,p’ are given
in (5.3). The kinetic equation (5.11) can be rewritten as
follows:

2 1 d 0
(}ﬁ + ;n-P H —kX- %) E{,f(x;p’tv a)}

0 1
=kP—- del‘(‘r)x XCOSw,T — psinw,T

ap o mw,

sinw,7 2 ad

o | ——0 _ ___ + —\E

(mwo % coswo-rap) {f(xcoswof

~ Psinwy 7, Pcosw,T + mwXsinw,7,t - T; a) .
mwy

(6.12)

For a harmonic oscillator whose frequency is modula-
ted by a wide-sense stationary, 6-correlated random
process, viz., I'(1)=D6(7), where D is a constant, the
integration on the right-hand side of (5.11) can be per-
formed explicitly, yielding®?

9 1 ] d
(al + Zp . ﬁ — kX - %)E{f(x,pst;a)}

:kZD(x- 8%) E{f(x,p,t; 2)} (5.13)

The one-dimensional version of this equation was
derived previously by Mollow (cf. Ref. 4).
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Equation (5. 13) corresponds to a Fokker —Planck
equation in phase space, with a quadratic diffusion
coefficient. The latter is due entirely to the presence of
random fluctuations. No exact fundamental solution for
(5. 13) seems to be possible to the general case. How-
ever, closed systems of equations for moments of any
order can be obtained. For example, since

E{x(t; @)} = [ dx [, dpXE{A(X,p, £; )},
Efp(t; @)y=[ sdx [ ,dppE{f(x,p,t; a)},

one derives from (5.13) the following equations of
motion:

(5.14a)
(5. 14b)

d 1
EE{x(t; )= %E{p(t; a)l, (5.15a)

%E{p(t; a)} = - kE{x(t; @)}. (5.15b)

The initial conditions required for their solution are
obtainable from (5. 14), viz.,

E{x(O;a)}:fdefogdpr{f(x,p,O; a)l=x,, (5.16a)
E{p(0; a)}= [ jax [ dppE{/(x,p,0: a)}=p,.
(5.16b)
It then readily follows that
E{x(t; a)}=x,coswyt + (k/m) ™/ ?p, sinw,t, (5.17a)
E{p(t; a)}=p,cosw,t — (k/m)!/ 2%, sinw,l, (5.17)

where w,=(k/m)'/2., We next note the following: (1) The
random perturbation 6G(¢; «) in this case has no effect
whatsoever at the level of the first two moments. (This,
of course, is not the case for higher moments); (2)
Equation (5. 17) gives the expressions for the position
and momentum of a classical harmonic oscillator
characterized by a frequency w,. This is due to the fact
that the stochastic Liouville equation (5. 10) is identical
to the equation governing the classical distribution
function f,{x,p,t; )= 6[x - x(¢; 2)15[p - p(t; ¥)],

f(x,p,0; ) =06(x - x,)6(p — p,), where (d/dt)x(}; )
=(/mplt; @), (d/dt)p(t; @) =~ k[1+56G(t;n)]x(t; @), and
x(0; a) =%, p(0; v)=p,.

In the long-time Markovian approximation, (5.11)
simplifies to the Fokker —Planck equation

0 1 0 d
(a—t+;P'&'—kx'%)E{ﬂx,P,l:d)}

I SCENT L0 L0 .9

‘(ap D (x,p) ap+ap D'¥(x,p) %
xE{f(x,p,t; a)}.

The two dyadic diffusion coefficients are given as
follows:

D‘”(x,p):[sz dTF(T)coszon]xx

0

(5.18)

K " .
_<2mw0/ d'rl"(T)stwOT)xp, (5.19a)

0

D(z)(x, p)= _[(;i’_)z / drT(7) sinzon]xp

0

k® o
+(2mw0 [d'rl‘(r)sm wo'r)xx. (5.19b)
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In general, no exact solution to (5.18) seems to be
possible. Nevertheless, closed systems of equations
for moments of any order can be obtained by taking
appropriate phase-space moments. For example, using
the definitions of the average position and momentum
[ef. Eq. (5.14)], the following equations of motion can
be readily derived from (5, 18):

(% E{x(t; o)} = %E{p(t: )}, (5.20a)

L plp(t: )= = kE(; o)+ e E{x(t; o)} - ¢, E{p(t; )},

dt
(5,20b)
with the constant coefficients ¢, and ¢, given by
s w
¢, = / dTT(7)8in2w,T (5.21)
1 2mw0 . [C]
AN A
s :(;——-) dTT(7) sin®w,T. (5.22)
mw,, o

The latter one may be expressed in terms of the spec-
trum I'«) as follows,

R 27 A A
cz,(ﬁ.__m%) 2((0) - 2w, (5.23)
On the other hand, the former one may be written as

2

kT

C,= 2—177—(.0—0 5 T, (2uw,), (5.24)
where
~ 2 e .
T,Q2w,)= - dTT (1) sin2w,T
0
(R A |
=—p f @) du (5.25)
T o U =2w,

is the Hilbert transform of I:‘(u).

Eliminating E{p(/; &)} between (5.20a) and (5. 20b),
we obtain the second-order equation

@

A Bl b+ e, - B q)}+w§(1 - Zf-;)E{x(l; o)}

O
=0 (5.26)

for the mean position vector. It is clear from this ex-
pression that the presence of random fluctuations has a
significant effect, even at the level of the first statisti-
cal moment. The average position is damped by an
amount proportional to ¢,. According to (5.23), this
damping may be negative when the fluctuations are
particularly strong at twice the unperturbed frequency.
Furthermore, a shift in the oscillator frequency arises,
which is determined by the Hilbert transform of the
spectrum of the correlation function T'(7), Identical re-
sults have been reported recently by Van Kampen (cf.
Ref. 20) who applied the long-time Markovian approxi-
mation directly to the equations of motion of one-dimen-
sional classical harmonic oscillator, The coincidence of
his results with ours is not surprising at all since the
mean trajectory of the quantum mechanical oscillator is
exactly the same with the path traversed by a classical
harmonic oscillator., [More generally, this statement is
valid whenever the potential field V(x,; ) in (1.1) is
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such that the exact Wigner equation is of the form of a
Liouville equation. |
C. Vix, t;o) = 1/2k[x-adH{t; )] ?

The Wigner distribution funetion is governed in this
case exactly by the stochastic Liouville equation

2 1 3 P
L p . .2 )
(az P oy TR ap>f(X,P,l.oz)

¢
:kf)H(l;u)a'a—I;f(x,p,l;a). (5.27)
The corresponding kinetic equation for the mean Wigner

distribution function in the first-order smoothing ap-
proximation has the form

4 1 0 d
<-a—t + ;Z—p -a-; —-kX ﬁ)E{f(x,p,t:a)}

2 ¢ sinw,7 a
e / arT Taa-(——o——'—+ 4)
ap [ . (r) mw, &x COSwoT ap

. 1 ;
XE(flXcosw,T— —— psinw,7,Ppcosw,T
mw,

+mwXsinw, 7,/ - T: q)}] ,

where T(7)=E{8H({; w)0H{I - 7; 2}

(5.28)

For a random process 6H(/; a) which is wide-sense
stationary and & correlated in time, viz., T'(7)=D5(7),
where D is a constant, the time integration in (5.28) can
be carried out explicitly, The resulting transport equa-
tion is

0 1 2 ¢
(a_t Py — kX ap>E{f(x,p,1f. )}

a 2
:k2D<a-a—p)E{_f(x,p,/;rx)}. (5.29)
If, in addition to the above assumptions 6H(l; ) is a
Gaussian random process, (5.29) is the exac! statisti-
cal equation for E{f(x,p, ¢ @)}

The stochastic Liouville equation (5.27) is identical
to the equation governing the classical distribution
function f,(x,p, ¢; ) =[x - x{; 2)16[p — p(/; ¥)],
fx,p,0:4)=05(x - x,)0{p - p,) associated with the
Brownian motion of a simple, classical, harmonic
oscillator, viz., (d/dO)x{(; o) = 1/m)pt; a), (d/dOp(t; a)
= —kx(t; o)+ adH(t; «), with x(0; 2)=x,, p(0; ¥)=p,.
Equation (5. 29) has an exact fundamental solution since,
except for the initial condition, it is identical to the
equation satisfied by E{f, (x,p,/; )}, and the latter has
been studied extensively (cf. Ref. 30).

In the long-time Markovian approximation, (5.28)
reduces to the simpler transport equation

d 1 d 2
<—a—z + Ep . a~x‘ —-kx- ap>E{f(x,p’t' (I)}’

:(g_.D(l),i_F_a..

il N
= ot 7 Dm'ﬁ) E{f(x,p,l; @)},

(5.30)

The dyadic diffusion coefficients are given by the ex-
pressions
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D = (% J," a7 (1) coswyTaa, (5. 31a)

’)2 g
D‘”:(—L—/ dTF(T)sinwo'r)aa.
MWy 0
They can be easily written in terms of the spectrum
I'(x) and its Hilbert transform I'y(u) as follows:
DD =nrtaal (wy)/2,
D =ﬂk2aaf‘ﬂ(w0)/(2mwo).

Since both D' and D'’ are constant, it is possible to
determine a general fundamental solution for the
Fokker—Planck equation (5, 30).

(5. 31b)

(5. 32a)
(5. 32b)

APPENDIX A: THE UNCERTAINTY PRINCIPLE
IN PHASE SPACE

On the basis of the Schwartz inequality,
7%, p, £; 0) | < @nR)S[ [o5dy |4*(x+ Ly, 1; 0)[2]

X[ fos Ay [0 - 3y, ;) [?). (A1)
Consider the integral
L= [ady|v*(x+1iy,t;0) [P =6 [ (A2)

The total action, however, is conserved for every
realization o € A, and is assumed to be normalized to
unity (cf. Sec. 2), Therefore, 7,=6. Similarly,

L= [sdy [9(x- 1y, t;0)[2=6.
Using these results in (A1) we obtain, finally,

|F(x, p, t; )| < (r)

(A3)

Vo< A, (A4)

APPENDIX B: DEGREE OF COHERENCE

Given a wavefunction ¢(X, t; &), the degree of co-
hevence, D(t), is defined as follows:

DX(1) = (@nh)? [isax [ 5 aplE{r(x, p, 1; )}
= [ %, [ozdxy |E{* (%, t; 0)0(xy, 1; )},

This quantity is intimately linked with the irreversible
loss of information (coherence) due to the statistical
fluctuations.

(B1)

The degree of coherence is characterized by the

property
DY) <1, (B2)

the equality holding for the case of a purely coherent
state. To show this we note that in the absence of ran-
dom fluctuations (B1) reduces to

D)= foadXy fosdXy [0¥ (%, 00 (%, 1) |2
= Jad% |00, O [P1L [sax [0y, 0|2 ]=1, (B3)

the final equality following because of the conservation
of the total action,

To prove the inequality D?(¢) < 1, which holds for a
partially coherent (mixed) state, we use the Cauchy—
Schwartz inequality, *® viz. ,

| E{w*(x, £; a)o(xg, 15 a)}b |2

< E{[ 0y, t; @) [ME{ [v(xy, t; @) |2}, (B4)

in conjunction with (B1), We then have
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DM1) < [ f 5%, B[00, £; ) [PV [ d%; E{|0(xy, £; @) [7}]

= 1: (B5)
the last equality following from the fact that the total
mean action is conserved and is normalized to unity,

APPENDIX C: INTEGRATION OF THE KINETIC
EQUATION (4.19)

We shall integrate here the transport equation (4, 19)
and use the result to determine several averaged ob-
servables. For simplicity, we shall restrict the dis-
cussion to the one-dimensional case.

Taking a double Fourier transform of (4.19), we ob-
tain the initial value problem

-ﬁ!z [¥(0) ~ Y(ﬁu)]}E{f (q,u,t; 0)}=0,

{Cla)
E{flq,u, 0; )} =folg, ), (C1b)
where
E{f(q,u, t; @)}
=@n)? [Ddx [ dpexpl-ilgx +up)E{flx, p, t; @)},
(c2)
We next introduce a new function
2lg,u, 1) =exp(WDE{f (g, u, t; @)}, (C3)

together with a new set of variables (r, ¢), defined by
the relations

)1/t (C4a)
(C4b)

The equation for the time evolution of g(¢, f) = glr sing,
(mk)Y %y cosg, t] now takes the following form,

u=(mk)1 ycose,

q =vsing.

(37 +0sg - 7 7050, 0 =0, (c53)

g(6,0) =24(0), (C5b)
where ¥(¢) =v[(mk)1 *hr coss).

The solution of (C5) can be found by the method of
characteristics. It is given by

t
§(¢,t)={eXp%1;r de?(qb—on)}gfo(rb—wot). (Ce)
0

Returning to the original variables, we finally have

E{flq,u,t; &)}
g sinw, )]
0

t
1
:exp[ vt + 7 / dry(fzucoswoﬂr
0
Xfo(q coswyf — Mmwt sinw,f, # coswyf + ;;Z—(;- s'mw(,/).
0

(€7)

Many important averaged physical observables can be
found directly from (C7), making use of the fact that the
moments of E{fx p,t; @)} can be expressed in terms of
derivatives of E{f(q,u t; a)}. For example, the aver-
aged total energy of the system is given by the formula
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o w0 2
ElE@t)}= / dx / dp<-§;7-+§kx2)E{f(x,/>,t;a)}

_oefl e )
=- (27) ZmWE{f(q,u,f,a)}

3 sz
e Pl o) (c8)
q q=u=0

Substituting (C7) into the above expression, we obtain
E{E()}=E{E(0)}~ v"(0)t/2m. (€9

Since y"(0) <0, we can see immediately that this model
predicts amplification of the energy of the particle due
the stochastic variations of the potential field. The
formula (C9) is also valid for the case of free propaga-
tion (wy,— 0). For the three-dimensional case, (C9) is
replaced by

E{E(O)}=E{E(0)}- 3" (0)t/2m. (C10)

Expressions for other physical averaged observables
are listed below:

(i) Mean centroid of a wavepacket:

Bl ()} = Elx (0)} coswyt + —— E{p,(0)} sinwyl;
mw,
(Cl1a)

(ii) Mean momentum:
E{p (1)} = E{p,(0)} coswyf = mw,E{x,(0)} sinwyt; (C1l1b)
(iii) Spatial spread of a wavepacket:

E{ok(t)} = E{o2(0)} cos’wqt + (mwy) 2E{0* (0)} sin®w,t

1 2 . y*(0)
x o E{0Z,(0)} sin2w,! w0
x(—,— _ sin2w01> ; (Cl1e)
2 4(1)0
(iv) Momentum spread of a wavepacket:
E{o}(t)} = E{d} (0)}cos®wyt + (mw,) E{02(0)}
X sin*wyt - mwoE{0%,(0)} sin2wt
t sin2wgf
—y ()5 + S c11d
y (0)(2 o ) C11a)

In the limit as wy —~ 0 (free propagation), these results
simplify as follows:

0 B, 0=l O} + o Blp O)); (C12)
@) E{p.t)t=E{p.0)}; (C12b)
() E{o30}=BloZ0)} + -z EGH O}

- %E{oip(o)}t— 13%)} £, (C12¢)
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(iv) E{o}@®)}=E{o}(0)}-»" ().

It is interesting to note that the average spread of a
wavepacket grows with time due to the presence of
stochastic fluctuations. The growth is proportional to
the first power of time for a particle in the field of an
elastic force, and to the third power of time for a free-
ly propagating particle, On the other hand, the spread
of momentum grows linearly with time in both cases.

(C12d)
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Lorentz transformations as space-time reflections. Il.
Timelike reflections

Jorge Krause

Departamento de Fisica Aplicada, Facultad de Ingenieria, Universidad Central de Venezuela,
Caracas, Venezuela
(Received 12 July 1977)

Continuing previous work, some features of the covariant factorization of Lorentz transformations, into
complementary space-time reflections, are further discussed in terms of timelike reflections. Several
properties of timelike reflections are shown, which bear interesting relations with the Lorentz tensor
performing active isometric transformations between two inertial observers, while their geometric meaning
is also briefly examined. Some product rules for timelike reflections appear, as a background enabling the
discussion of the group multiplication laws for Lorentz isometry tensors. This brings into the fore the
realization of the restricted Lorentz group attained in the present formalism. The instances of two
multiplication laws of the Lorentz tensors are examined. Next, the same problem (i.e., factorization of an
ordinary rotation into two complementary reflections) is readily solved for the Euclidean 3-space. Both
formalisms (Euclidean and Minkowskian) are essentially the same. Indeed, factorization of an isometric
transformation into two complementary reflections is a general property of flat Riemannian geometry. A

few concluding remarks are presented.

1. INTRODUCTION

Continuing previous work,! in this note we further
analyze Lorentz transformations in a manifestly
Lorentz covariant manner.

It is well understood today that the best (and certainly
the most elegant) approach to relativity theory obtains
by considering it as the geometry of absolute space—
time.? The very program of every relativity theory re-
quires us to emphasize this remark as strongly as
possible, Thus, for instance, the Einsteinian principle
of special relativity demands that the laws of physics
have to conform to this geometric approach in.a mani-
festly Lorentz covariant fashion.

It is clear that Lorentz transformations themselves,
considered as the fundamental laws of free motion,
should not evade this normative rule of geometric co-
variance. In other words, one should represents
Lorentz transformations by means of a {rank two)
space—time fensor, able to perform active isometric
transformations between inertial observers character-
ized by their 4-velocities.® The problem, however,
seems to have been neglected in the literature.* As was
shown in Paper I, its solution casts some new light on
the structure of Lorentz transformations, by showing
the rather simple (and important) role played by
space~—time reflections.®

The present paper dwells only on timelike reflections,
as a background for handling restricted Lorentz trans-
formations by means of a sprightly enough absolute
formalism. In Sec. 2 we review some algebraic fea-
tures of timelike relfections, and we also present their
relations with the Lorentz tensor introduced in Paper I.
Several product rules for timelike reflections are
shown, while their rather intuitive geometric meaning
is neatly stated. Next, in Sec. 3 we discuss two group
multiplication laws for the Lorentz tensors, which
bring into the fore the realization of the restricted
Lorentz group attained in the present formalism. Again,
the space—time geometry involved in these algebraic
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manipulations appears quite intuitively, and is briefly
discussed. In Sec. 4, the same problem is succinctly
solved for Euclidean three-dimensional space (i.e.,
factorization of an ordinary proper rotation into two
complementary reflections). The great similitude be~
tween the Euclidean and the Minkowskian factorization
formalisms is stressed, for they are essentially the
same. Finally, in Sec. 5 we end up with a few general
remarks.

2. TIMELIKE REFLECTIONS

With the aim of studying those properties of time-
like reflections which play an outstanding role in the
performance of proper orthochronous Lorentz transfor-
mations, let us first briefly recall some results already
presented in Paper I. For the sake of handiness, in the
present note we omit tensor indices throughout; instead,
we use matrix notation to denote 4-vectors and rank two
4-tensors.® Accordingly, for the Lorentz tensor L*
presented in Paper I, characterizing an active restricted
transformation from an old v-frame into a new u~frame,
we write’

Lv,u)=I=(u~v)eu = (1 +0v* cu)u+v)ev* > I —u-u*),
2.1)

where I stands for the 4 X4 identity and where » and u
denote the 4-velocities of two inertial observers. It was
shown in Paper I that if we transform space—time
events by means of this L(»,u) tensor, the familiar
features for an active Lorentz transformation obtain.
As we shall see presently, it is useful to write, in-
stead of Eq. (2.1), the more compact equivalent
expression:

L) =I-Q+v*ou)y*lw+u)e w+w)+2v-u", (2.2)

at which we arrive after some straightforward steps.
In this form one immediately observes that the
Minkowski adjoint L* merely interchanges the role of
the 4-velocities v and u; i.e.,
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L*(v,u)=L{u,v), 2.3)
and also that
L{v,v)=1, (2.4)

as it should be. Moreover, the following transforma-
tions hold:

(2.5)
(2.6)

which allow us to find the expected inversion law for a
Lorentz matrix. Indeed, we get

L(v,u)° L{u,v)=1I.

Lw,w) u=v,

Lv,w)ev=2@"u)v—u,

2.7

We next recall some notions concerning timelike
reflections. As we know, if # is a unit timelike vector,
the rank two tensor defined by

R(u)=I-2u-u (2.8)

is a space—time operator reflecting every 4-vector by
an hyperplane with timelike normal #. Simple immedi-
ate properties of timelike reflections (needed presently)
follow:

R(u) =R*(u) =R(~ u), 2.9)
R()*R(u)=1I, (2.10)
L{v,u)*R(w) ° L{u,v)=R(v), (2.11)
R)su==L{v,u)-v, (2.12)
R()en-RT(u)=n. (2.13)

Of course, space—time reflections are Lorentz trans-
formations by themselves [i.e., Eq. (2.13) above].
They do not form a subgroup of the Lorentz group,
however, for clearly the identity does not belong to the
set, nor does the product of two reflections correspond
to a reflection [cf. Eq. (2.24) below].

In order to further clarify the role played by timelike
reflections in restricted Lorentz transformations, we
observe that the Minkowski self-adjoint matrix given by

Rlv+uw=I-Q1+v»u)yv+u)(v+u)t, (2.14)

which figures in Eq. (2.2), corresponds precisely to
a space—time reflection along a unit timelike vector
v +u (say) defined as follows:

vFiu=[20 +v W)V +u), (2.15)

i.e., the “mean 4-velocity” of both inertial observers,
duly normalized. We call this vector the normalized
sum of v and u. We have, indeed,?®

Rlv+u)=I-2@+u)- (v +u)r (2.16)

Hence, the Lorentz tensor presented in Eq. (2.2) cor-

FIG. 1, Space—time diagram
representing the construction
of the #>v normalized time~-
like vector,
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responds to

L{v,u)=Rv+u) +2vu*. 2.171)
In this manner, since

Rv+uw)eu=-n, (2.18)
we easily prove the fundamental resuit:

L(v,u)=R{@)-R{w+u)=R{w+u)R(n). (2.19)

Thus we have two equivalent factorizations of L{v,u)
into two “complementary” timelike reflections. The
first factorization which appears in Eq. (2.19), i.e.,
R()+R(v +u), was already presented in Paper I.° Also,
the fact that the essential features of the L(v,u) trans-
formation of events (namely, Fitzgerald contraction
and time dilation) are entirely due to the R(v + &) ref-
lection factor has been remarked in that paper. The
second factorization R(v +u)° R(x) is new, and interest-
ing. Indeed, Eq. (2.19) gives us a kind of “quasicom-~
mutation” rule for timelike reflections which, sensu
stricto, do not commute. The result stated in Eq.
(2.19) has an important meaning in what follows be-
cause it governs all those nontrivial facts of timelike
reflection geometry, which we now proceed to review,

To further simplify our notation, let us also define
the novmalized difference between two timelike unit
vectors, u and v, as the timelike vector

u=v==Ru) v=20u"v)u-v. (2.20)
Clearly, this normalized difference is such that
o) to=u. (2.21)

It must be observed that both » + v and » < v are time-
like future-pointing unit vectors (as « and v are). We
also remark that

vio=vip=yp (2.22)
holds for all 4-velocity v. Figure 1 is a space-time
diagram representing the construction of the u = v vector
in the (u,v)-flat. We observe, quite generally, that
= is not the same as — (v = ) (while, of course,
v¥u=utv, always). Finally, the following useful
relation,

v w=v+ i, (2.23)

can be proved, and shall be used presently.

After this preliminaries, let us next write v ¥ u=w
in Eq. (2.19); that is, we set v=w=u and u=w <~ v.
The following product law for timelike reflections
obtaing®:

R()*Ru)=L(v,u—v)=L{w~u,u), (2.24)

quite generally. These equivalent Lorentz tensors cor-
respond to transformations from the v-frame into the
(u = v)-frame, and from the (v = u)-frame into the u-
frame, respectively. We represent these relations in
Fig. 2, which helps clarifying the intuitive meaning of

FIG. 2. Space—time repre-
sentation of the identity L,
=L,, with Ly=L{v,u—v) and
Ly=L(v—u,u).
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Eq. (2.24). Indeed, the vectors v=u, v, u, and u v,
all belong in the same 2-flat and, moreover, it is clear
that the “rotation” from v = into u is the same as the
“rotation” from v to 4 = v, Furthermore, by the same
token, for any Lorentz tensor L{y,u) we get the
identities

Lw,w)=Llv+u,u+@w-w)]=Llv +@v-u),v+u],
(2.25)

which geometric meaning is easy to grasp. In the same
manner, using the quasicommutation law stated in Eq.
(2.19), we immediately get

R(w)*Ru) R@w)=R(v-u),

as the reflection law for timelike reflections. Hence,
a new law of inversion for the Lorentz tensor obtains;
namely,!°

LYv,u)=L,v-u).

(2.26)

(2.27)

We readily interprete this law, since v is the L(y,u)
transformed vector of ulcf. Eq. (2.5)], while v 24 is
the image of v upon L{v,u), and therefore the transfor-
mation from u to v is the same as the transformation
from v to v =% [cf. Eq. (2.6)]. Furthermore, we may
tickle the argument and get a new geometric identity:

L{y,u)=Llu,u ~v)=L{w~u,v). (2.28)
Finally, we also note the useful relation
R(u+v) Rlv-w) Rlu+v)=R(u-v), (2.29)

which can be readily proved.

This completes our review of the essentials of time-
like reflection geometry. Similar features can be ob-
tained for spacelike reflections, while changing some
minor details.

3. SOME GROUP MULTIPLICATION RULES

In the present section we study two group multiplica-
tion laws for the L (v,u) tensors; that is, we tackle the
problem raised by the Lorentz tensor realization of the
restricted Lorentz group.

As was shown in Paper I, each L tensor of the form
(2.2), with » and u arbitrarily given, corresponds to
a well-defined proper orthochronous Lorentz matrix
with six independent parameters, Notwithstanding the
previously found identities (2.25) and (2.28), it should
be clear that this association is an isomorphism. In-
deed, the shown identities have a purely formal char-
acter.'® Hence the six parameters are identified, with-
out ado, by means of the six independent components of
the 3-velocities v and u describing the motion of the in-
ertial observers relative to any Galilean working frame
we may choose, The explicit structure of the L(v,u)
tensor relative to a general w-frame [i.e., v#w,
w#*w, and wT = (1,0)] is quite involved. As a matter of
fact, however, the simplest interpretation of the L{v,u)
tensor (as an active Lorentz transformation operator)
arrives while choosing the v-frame as our working
frame, 1! i.e., by setting v =(1,0), which standpoint
clearly left the L tensor with only three independent
parameters, namely, the components of the velocity
u with respect to the working scaffold. Therefore, if
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we adopt this point of view (as we do in what follows),
L(v,u) corresponds to a restricted Lorentz transforma-
tion without rotation.

There are, of course, several multiplication laws
for the L tensors, which bear some interest for each
admits a different geometric meaning, while they all
bring the restricted Lorentz group into the fore. When
looking for group multiplication rules, for the sake of
simplicity, we will only pay attention to those combina-
tions of two L’s which contain three inertial observers
(v, u, and w, say, with v for the 4-velocity of our
working frame). In effect, these are the most simple
combinations of L tensors contrived to give us a six-
parameter outcoming tensor product.

The first multiplication rule attains quite directly if
we use Eq. (2.24). Indeed, we immediately obtain

(3.1)

where the three parameters contained in # have been
eliminated in the outcoming result, This group multi-
plication law of the Lorentz tensors in interesting in
that it neatly shows that the set of L tensors in the form
L{v,u-v) tulfills the restricted Lorentz group in a
manifestly Lorentz covariant fashion. We have

L{v,u=v)° Lu,w—-u)=L{v,w-1),

Lv,v-v)=1I, (3.2)
LMo, u~v)=Lu,v—u), 3.3)
Lw,u—v)*[L@,w=u)°L{w,z -w)]
=[L@,u=v)°Llu,w-u)]° Liw,z =w)
=L,z ~v}. (3.4)

It must be borne in mind that these L{v,u - v) tensors
are not the same as the L(v,v ~u) tensors obtained in
Eq. (2.27).%2 Incidentally, we readily observe that

Lw,w) > Lv,u) =Lw,u—~ v) 3.5)

is a general rule for “squaring” a Lorentz tensor, and,
thus, by the same token, the formula

Lw,u)=Lw,v+u)+ L{v,v +u) 3.6)

immediately solves the problem of finding the “square
root” of a given proper orthochronous Lorentz matrix.
We wish to remark, once again, the manifest covar-
iance of the whole procedure leading to these resulis,

As our second example, let us briefly discuss the
outcome of first transforming the space—time points
x from the working frame (v-frame) into the y-frame,
and next from the u-frame into a new w~frame. Let us
then compare this product with the direct transforma-
tion from the initial v-frame into the final w-frame.
Thus, we set

% =L{v,u) x, 3.7
and also

x"=Lw,w) %', (3.8)
where clearly

w =L, u)w 3.9)

is the 4-velocity of the w-observer as seen from the
u-frame. Of course,
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L{v,w')=L{v,u) L{u,w)* L{u,v) (3.10)

is the L tensor used by the y-observer in its own frame
while performing the transformation z—~w; i.e.,

v— w' [since v=L(v,u)* u, as we know]. Moreover,

Eq. (3.10) states precisely the transformation of the
L{x,w) mixed tensor from the v-frame into the z-frame.
Therefore, the product of these transformations cor-
responds to

x" =L, u)* L, w)*x (3.11)

As is well known, transformation (3.11) does not in
general coincide with the direct transformation from »
into the w-frame, say,

x" =L, w) x. (3.12)

Indeed, if we adopt the v-frame as our working frame,
then Eq. (3.8) requires the w’-Cartesian-base to be
parallel with the v-Cartesian-base, while in Eq. (3.7)
parallelism among the v and u 3-space bases is re-
quired. However, because of the relativistic effect of
rotation of the Cartesian bases used by three inertial
observers, parallelism is not quite generally a transi-
tive property in relativistic geometry. Hence, parallel-
ism among the 3-bases used in the w-frame and in the
v-frame [as required in Eq. (3. 12)] is not a general con-
sequence of Egs. (3.7) and (3.8); L. e., ¥” and x™ may
differ by a space rotation,

In Eq. (3.11) we have the following multiplication
law:
L(v,u) s L(u,w) =R (v +u) > Rlu+w)
=Llv+u,(w+u - @+v)], (3.13)
where the intermediary parameters in u# have notf been
eliminated. On the other hand, in order to relate this
tensor product with the L(v,w) tensor we observe that
vew'==Llw,w) u v Rlu+w)==v-v**Rlv+w),
(3.14)

and thus, after some manipulations, we get

L{v,u)* Llu,w)=L(w,w)-R@+w)
+R{v+u) Rw) -Ru+w). (3.15)

Hence, we may write the following result:

x" =[R(+u) Rlu+w) Rw+v)+2v-v*]-x",
(3.16)

Now, since we set v7 =(1,0), from Eq. (3.16) we
immediately get the time components of the events x”
and x" relative to the working frame; i.e., we have

t”21)’°x”:v’°x”':t”', (3.17}

as it should be. In the same manner, for the space
components of x” and ¥ (relative to the v-frame) we
use the orthogonal projector I —v+y*, We thus obtain

xp=R(v,u,w)x, (3.18)

where
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xn=I=vev*)ex", xfp=U~vev*)ex" (3.19)
and where

R{v,u,w)=R{v+u)*R{u+w)*Rw+v) (3.20)
is the product of three timelike reflections.

In order to properly interprete Eq. {3.18}, let us
explicitly write the orthogonal projector I —v-v* with
respect to the v-frame. It corresponds to the 4X4
arrangement

. |0 0T
I=-v°0'= 01 ) (3,,21)

where, clearly, 0 denotes the null 3-column-vector,
and I is the 3X3 identity.In the same manner, let
A BT

Rv,u,w)= (3.22)
C R

(say) be the matrix arrangement of the components of
R(y,u,w), relative to the working frame. Since

R*(v,u,w)* R(v,u,w) =1 (3.23)
and

R(w,u,w)*R@w)=R@)*R@,u,w), (3.24)
we have

A=:1, B=C=0; (3.25)

moreover, we also get
RT-R=1I, (3.26)

Thus, relative to the working frame, we have found
that

+1 07

o R |’ (3.27)

Rw,u,w)=

where R is an orthogonal 3 X3 matrix, as it should be.

Hence, we have found that the image-events x” and
x™, corresponding to the same object event x, have
equal time components relative to the v-frame, while
their space components in this frame are related by
means of a (proper or improper) 3-rotation. This com-
pletes our discussion of transformations (3.11) and
(3.12).

4. ROTATIONS AND REFLECTIONS IN
EUCLIDEAN 3-SPACE

In this section we briefly discuss the factorization
method for an ordinary proper rotation into two com-
plementary reflections for Euclidean three-dimensional
space. The formalism in this case turns out to be so
simple that we do not claim originality for it. Anyhow,
it seems important to observe that we can cast ordinary
proper rotations into two factorized reflections forms,
which bear a great similarity to the Minkowskian fac-
torization formalism previously discussed, and which
(although elementary) is generally unrecognized in the
current literature of mathematical physics. Again, the
tool afforded by this approach allows us to work out
rotations in ordinary space by means of reflections,
while these are somehow simpler to handle. In parti-
cular, we wish to mention here that a formalism ob-
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tains which is specially adapted for stuyding Pauli
spinors, ! even if we do not touch on applications in
the present note.

As we did in Paper I, let us consider in ordinary
3-space two orthonormal right-handed Cartesian triads,
{1,j,%} and {i’,j’,k'}, say, such that'®

j=-[1 —(&T ok 22—k kT) o+ K/, (4.1)
jI:[l —(kT°k’)2]'1/2(I _klokrT)ok, (492)
i =i. 4.3)

These triads satisfy the orthgonality conditions, as well
as the relations of completeness. Therefore (as is well
known, indeed), these orthonormal Cartesian bases are

related by means of the proper rotation
R,k ) =ii'T+j+j’T+k-K'T, (4.4)

As can be proved, after some straightforward steps,
the following expression obtains:

Rk,k')=I-(1 +kT+k' )k +k’) o k +k")T + 2k k'T

[cf. Eq. (2.2)]. Therefore, while introducing the (4.5)
normalized sum

k Pk =[2(1 +kT - k)] 2(k +k'), {4.6)
we get [cf. Eq. (2.17)]

Rk,K)=Rk +k’') +2k-k'T, 4.7

where Rk +Kk’) performs the reflections by the plane
orthogonal to k +k’; namely,

Rk +k')=I-2(k +k’)- k k)T, {4.8)

However, once we arrive at this point, it is an easy
matter to further prove that [cf. Eq. (2.19)]

Rk,k’) =Rk +k)+Rk') =Rk)+ Rk + k), 4.9)

where R(k) and R(k’) are reflection operators by the
planes orthogonal to k and k’, respectively. Equation
(4.9) states the expected factorizations of the proper
rotation (which brings k’ into k) in terms of two ele~
mentary reflections.

5. CONCLUDING REMARKS

We conclude this note with some few remarks. It
seems that the reflection factorization approach affords
an interesting tool for handling “rotations” in flat
geometry. Indeed, the great similarity between the
Euclidean and the Minkowskian factorization formalism
should be stressed, for they are essentially the same.
1t is clear that factorization of isometric transforma-
tions (i.e., “rotations”) into two complementary reflec-
tions appears as a general property of flat Riemannian
spaces, since the method is resting exclusively on the
most general properties of the flat metric.

It is also interesting to remark that this formalism
seems to probe the structure of Lie groups operating
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as isometric groups in flat spaces, without recourse

to the infinitesimal transformations and the associated
Lie algebra, as is usually done. Indeed, the possibility
arises of having enough further information on the be-
havior of general space—time reflections, for instance,
as to end up with a complete understanding of the struc-
ture of the Lorentz group. In this sense, the compact-
ness of the reflection method for handling Dirac
spinors!® seems to reveal a very fundamental relation
between space—time reflections and the structure of
the Lorentz group. On these grounds, although reflec-
tions do not form a group by themselves, further re-
search would be desirable as to group theoretic possi-
bilities of reflection geometry,

13, Krause, “Lorentz transformations as space—time reflec-
tions,” J. Math. Phys, 18, 889 (1977), hereafter referred
to as Paper I,

2Cf, J.L. Synge, Relativity: The Special Theory (North-
Holland, Amsterdam, 1965), 2nd ed,, p. 34.
3“gubluminal” Lorentz transformations are here alluded, to
be sure; “superluminal” transformations lcf. E., Recami and
R. Mignani, Nuovo Cimento 4, 209, 398 (1974)] are not in~
cluded in the present formalism.

‘Nevertheless, there are some exceptions; cf., e.g., S. L.
Basanski, J. Math. Phys. 6, 1201 (1965), on which we al-
ready comment in Paper I,

"By the same token, a new tool obtains for handling geometric
problems in space—time; e.g,, see Paper I, Appendix B,
Other applications of physical interest will be published
elsewhere,

®Tensors of higher rank than two are not considered in this
paper. A contravariant vector v¥, u=0,1, 2,3, is simply
denoted as v, and it corresponds (by definition) to a 4~-col-
umn, while the 4~row v7T is written for the transposed matrix,
The Minkowski metric is represented by the matrix »
= diag(+ ———), We thus introduce the Minkowski adjoint (say)
v*, of the vector column v, as v*=vT-n. (“Dots” indicate
matrix multiplication.) Hence, v*-v=v, 0%, In the same way,
for a rank two mixed tensor S*- v, we simply write S, while
the associated Minkowski adjoint matrix $*=n 87 +n corre-
sponds to the tensor S;Y, Rank two tensors in the forms Natd
and S,, are avoided in this work (with the only exception of n).
Translation to the usual tensor notation is easy, We set ¢=1,
throughout.

Cf, Paper I, Eq. (1.1) of that article,
81t should be understood that all “sums” and “differences”
which appear in the arguments of our tensor operators are
duly normalized, according to Egs. (2.15) and (2. 20}. Thus,
we write R (v +u) instead of R(v +u), and L(v,u —~v) to denote
L{v,u=v), etc.

%Cf, Paper I, E4. (3,5).

107 ig clear that if v* and 2’ are unit timelike vectors belonging
in the 2-flat (v,%), and such that v'=L(v,u) -u’, then
L' ,W')=Lw,u), quite generally, Hence, the shown identities
are special (and interesting) instances of this theorem.

Hef, Paper I, Egs, (1.2) and (1,3).

L27he detailed properties of this group, which we denote by [ 2
lef. Eq, (3,5)], will be discussed elsewhere,

13¢f, Paper I, Appendix B, where an application to Dirac
spinors is presented.

“ef, Paper I, Appendix A,

15g6e Paper I, Eas. (AB)—(A8),
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Strings and gauge invariance®
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Within the context of the nonrelativistic theory of dyons, we study a number of interrelated issues
concerning the quantum formulation of magnetic charge. We begin by solving the two-body Schrédinger
equation for an arbitrarily oriented singularity line (string) in terms of the known solutions with the string
on the z axis. Charge quantization conditions emerge by requiring that the wavefunctions be single
valued. The general solutions express the necessary gauge covariance of the wavefunctions. These results
provide a basis for the reconsideration of the phase factor in the dyon—dyon scattering amplitude. Finally,
the connection between the formulations in terms of vector potentials and in terms of intrinsic spin is
investigated. This approach leads to a rederivation of the gauge transformation properties of the theory.

I. INTRODUCTION

The recent revivial of interest!=2® in the subject of
magnetic charge has focused much attention on the
fundamental features of charge quantization and the
associated “string”. Misconceptions continue to per-
sist concerning the Lorentz invariance of the theory and
the observability of the string. Our object here is to
reinvestigate this subject by examining the “gauge
transformations” which relate possible vector potentials
associated with different singularity lines (strings) and
their connection to charge quantization conditions.

The context of our discussion is nonrelativistic dyon—
dyon scattering (dyons are particles carrying both elec-
tric and magnetic charge), which was considered at
length in a recent paper.' There, we assumed that the
electromagnetic field was described by a single vector
potential. Depending on whether or not there was ex-
plicit symmetry under rotations in the electromagnetic
plane (E — E cos9+Hsin6, H—~ Hcos6 - E sinf, and
similarly for charges, currents, and potentials), the
corresponding string was required to be infinite (sym-
metric case) or semi-infinite (unsymmetric case) and
the charge quantization condition was found to bet

n, Symmetric,

1.1)

r_
m'=— (e, g, ~ e.8,) = .
182 = Caf) {én , unsymmetric,

where # is an integer. (The semi-infinite string gives
the least restrictive quantization condition, but it is not
forced upon us by the theory nor would it necessarily
be realized by actual, physical dyons.) We here wish to
explore to what extent we are free to choose the vector
potentials that occur, how such choices are related by
gauge transformations, and what types of quantization
conditions emerge. Also of interest is the formulation
of this problem in terms of an intrinsic spin, from
which the charge quantization conditions and gauge
transformation properties may be derived directly from
the properties of angular momentum.

Section II deals with the vector potential description.
In order that the Hamiltonian for the two-dyon system
may be separated into center-of-mass and relative mo-
tion terms, of the four possible vector potentials (and
associated strings), at most two can be independent. If

dWork supported in part by the Alfred P, Sloan Foundation and
the National Science Foundation,
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the vector potentials have the same structure, we ob-
tain quantization conditions of the form (1.1); other-
wise, we obtain quantization conditions on the individual
products

n, infinite,
eagb =

1 . (1.2)
s, Semi-infinite.

Integer quantization occurs whenever an infinite string
[see (2.12)] is used. The term “symmetry” however,
does not apply here, since the charges do not occur in
the invariant combination of (1.1).

All these relations between strings and quantization
conditions arise from the requirement that the wave-
function describing the two-dyon system be single-val-
ued. In the process, we find the wavefunction when the
string is arbitrarily oriented. This immediately gives
us the gauge transformation of the wavefunction when
the orientation of the string is changed. For integer
values of the charge combination [(1.1) or (1.2)], gauge
transformations between infinite and semi-infinite
strings, and vice versa, are allowable, in contrast to
integer plus one-~half values, where only a semi-infinite
string is permissible.

As an application of the above transformations, we
consider, in Sec. III, the scattering problem in which
both the direction of the string and the direction of
propagation of the incident particle are arbitrary. We
find the general wavefunction, and thereby the scatter-
ing amplitude, for a state having a particular value of
the projection of the total angular momentum along the
incident direction, exhibiting explicitly the physical
unobservability of the string.

In Sec. IV we examine another formulation that leads
to the two-dyon problem, in which the angular momen-
tum of the system is regarded as composed of two parts,
orbital angular momentum and an intrinsic spin com-
mon to the system as a whole.® The interaction of the
particles may be expressed solely in terms of this
spin. A particular dyon system may be realized by
diagonalizing the spin variable through a suitable unit-
ary transformation. Different quantization conditions
may be achieved by different diagonalizations. These
unitary transformations are not gauge transformations,
but a sequence of such transformations, which serves
to reorient the direction of the string, is equivalent to
the gauge transformation considered in Sec. II.
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In the Appendix we remark upon the singular nature
of the gauge transformations which occur in Secs. II
and IV. Consequently, when acting on the space of
physical states, the angular momentum operator satis-
fies canonical commutation relations everywhere, and
the field strength, which occurs, for example, in mag-
netic moment couplings, is string independent.

1I. STRINGS

Throughout, we will discuss the nonrelativistic,
quantum scattering of two dyons, with electric and
magnetic charges ey, gy and e, g3, respectively. The
Hamiltonian for the system is?*®

e e, t+
H =tmo? +imgv,t + G2k @.1)
1 2

where, in terms of the canonical momenta, the veloci-
ties are given by
mv, =P, —e,A_(r,, 1)~ gA ,(r 1), 2.2)
myV, =P, — eerl(rZ’ )~ ngml(r27 ). ’
The electric (e) and magnetic () vector potentials are'

478 (v, 1) =479 (1, 1) ~ [ (dr')i(r — ¢} xH(z,1) (2.3)

and
a7A (r,t) =41V, (v, 1) + [(dr') *f(r - )X EQ@’, 1),
(2.4)
with
A (r, 0= [(ar) £lr - x')- A, G, 0), 2.5)

A, (e, )= [(ar) *(x —1') - A (r',1).
Here, the functions f and *f represent the strings and

must satisfy

Ve S(r—1)=475(r ~ 1'). (2.6)

A priovi, f and *f need not be related and could be dif-
ferent for each source. So, for the case of dyon—dyon
scattering, it would seem that four independent strings
are possible.
The first condition we impose on the Schrodinger
equation,
HY =E¥, (2.7

is that it separates when center-of-mass and relative
coordinates are employed, which implies

elAez(r1’ D=- ngmx(rz, 0= eg.A (I‘),
(2.8)
eZAgl(r27 H=- g1Amz(ru e e A’ (r),

where r=r, —r,. Correspondingly, there are relations

between the various f functions,
(%)=~ f,(-x), *,{x)=-f(-x), 2.9)

leaving only two independent ones. The Hamiltonian for
the relative coordinates now reads

) e,e, + 182
A+ DOt B
(2.10)

H= 'i%[p - e, 5 Ar) +e.g,

where p is the reduced mass.
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If we further require that only one vector potential
be present, 4 =A4', so that the combination appearing
in (1.1) occurs in the Hamiltonian, one more relation
is obtained between the two f functions,

f,(x)=~f (-x). (2.11)
Notice that (2.11) possesses two types of solutions. (1)
There is a single string, necessarily infinite, satisfying

fx) = -f(~x). (2.12)

As shown in Appendix A of Ref. 1, the vector potentials
transform in the same way as the charges and currents
under E,H rotations whenever this condition is satis-
fied. This is the so-called symmetric case. (2) There
are two strings, necessarily semi-infinite, which are
negative reflections of each other. If identical semi-
infinite strings are employed, so thatA # A, the in-
dividual charge products in (1.2) occur in the dynamics.
The singularities of 4 and A4’ lie on lines parallel and
antiparallel to the strings, respectively. We will see
the consequences for the charge quantization condition
of these different choices in the following.

We now return to the general situation embodied in
(2.10). For simplicity, we choose the string associated
with A to be a straight line lying along the direction n,

nxr

_L_mxr , semi-infinite, (2.13a}
y ¥v—(n-r)
A:
11( nxr __nXr infinite
ry 2\yr-(m-r) r+(-r))’ )

(2.13b)

This result is valid in the gauge in which x,,, [Eq.
(2.5)] is equal to zero.' Without loss of generality, we
will take 4’ to be given by (2.13) with

n—z.

(This corresponds to taking the string associated with
A’ to point along the —z axis, f, ~2.)

We now wish to convert the resulting Hamiltonian,
#, into a form, /", in which all the singularities lie
along the z axis. The Schrodinger equation in the latter
case has been solved, for example, in Ref. 1, yielding
the quantization condition (1.1). This conversion is
effected by a unitary transformation’ (essentially a
gauge transformation),

H =etrHeir, (2.14)
The differential equation determining A is

VA =e,g,[ Arr) - A)]. (2.15)
We take n to be

n=siny cosy¥ + siny sind P + cosxz, (2.16)
and use spherical coordinates, to find

A=-egBn,r) (2.17)

where, for the semi-infinite string (Dirac)
Bp=0 -+ {cosd—cosx)F (8,9 —¥,x) - 2mix - 6),
(2.18a)

and for the infinite string (Schwinger)
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Bs =4[(cos6 ~cosx) F_(6, ¢ ~ ¥, X) = 21 (x = 6)
+ (cos8+cosy)F, (6, -9, ], (2.18b)
The functions occurring here are

] y=[" .
F (8,0, —/ 1: cosy cosf+siny sinfcos¢
)

2
~ ) cosb+ cosy|

1/2
Xtan-l[(ifﬁw> tanw_‘], (2.19)

e(a)

1z cos(x —9) 2

where the arctangent is not defined on the principal
branch but is such that F,(8,a,x) is a monotone increas-
ing function of @. The step functions occurring here

are defined by

() {1’ E>O}

)= 0, <0, (2.20)

e(g)z{l’ £>0, (2.21)
-1, £<0.

The phases, B, and ;, satisfy the appropriate differ-
ential equation, (2.15), for 0+ x (as well as 9+ 7 ~y for
Bs) and are determined up to constants. The step func-
tions are introduced here in order to make ei® con-
tinuous at 6=y and 7 —x, as will be explained below.
We now observe that

27
F(8,2n+a,x)-F,(8,a,x)= Teoso 2 cosxT »  (2.22)
so that the wavefunction,
= ity! (2.23)

(where ¥’ is the solution® to the problem with the sing-
ularity on the z axis) is single-valued under ¢ — ¢ + 27
when the quantization condition (1.2) is satisfied.

Notice that integer quantization follows when an in-
finite string is used while a semi-infinite string leads
to half-integer quantization, since g changes by a
multiple of 27 when ¢ — ¢ + 27, while 8, changes by a
multiple of 4. Notice that 8, possesses a discontinuity,
which is a multiple of 47, at =y, while 5; possesses
discontinuities, which are mutiples of 27, at 6=y, r-x.
In virtue of the above derived quantization conditions,
e'* is continuous everywhere. Correspondingly, the
unitary operator e!*, which relates solutions of dif-
ferential equations with different vector potentials, is
alternatively viewed as a gauge transformation relating
physically equivalent descriptions of the same system,
since it converts one string into another. [Identical
arguments applied to the case when only one vector
potential is present leads to the conditions (1.1) for
infinite and semi-infinite strings, respectively. ]

It is now a simple application of the above results to
transform a system characterized by a single vector
potential with an infinite string along the direction n
into one in which the singularity line is semi-infinite
and lies along the z axis. This can be done in a variety
of ways; particularly easy is to break the string at the
origin and transform the singularities to the z axis.
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Making use of (2.17) with -~ ¢,g, ~ 3m’ and (2.18a) for
n and —-n, we find

A=m'Bsn,r)
with
3§=¢-$+85-

In particular, we can relate the wavefunctions for in-
finite and semi-infinite singularity lines on the z axis
by setting x =0 in (2.25),

B{s:d)—w’

(2.24)

(2.25)

50
(2.26)

which, in its ¢ dependence, is in agreement with the
result found in Ref. 1 [see Eq. (3.24) there]. Note that
(2.25) or (2.26) reiterates that an infinite string re-
quires integer guantization.

¥(infinite) = e=im (*-¥ (semi-~infinite)

Il. SCATTERING

In the above, we related the wavefunction when the
string lies along the direction n with that when the string
lies along the z axis. When there is only a single vector
potential (which, for simplicity, we will assume
throughout the following), this relation is

3.1)

where § is given by (2.18a), (2.18b), or (2.25), for the
various cases. For concreteness, if we take ¥’ to be a
state corresponding to a semi-infinite singularity line
along the +2z axis, then § is either g, [(2.18a)] or g}
[(2.25)] depending on whether the singularity charac-
terized by n is semi-infinite or infinite. By means of
(3.1), we can easily build up the relation between solu-
tions corresponding to two arbitrarily oriented strings,
with n and n’ say,

-im?’
\I/n:e im B(n,r)‘I,/,

- . -
\I[n' = grim*18(a’ 1) B(n.r)l\pn s

(3.2)

which expresses the gauge covariance properties of the
wavefunctions.

For scattering, we require a solution that consists of
an incoming plane wave and an outgoing spherical
wave. We will consider an eigenstate of J - % where J is
the total angular momentum (see Sec. IV),

J=rx(p+m’'A) +m'r, 3.3)

and % is the unit vector in the direction of propagation
of the incoming wave (not necessarily the z axis). This
state cannot be an eigenstate of % +(r xp), since this
operator does not commute with the Hamiltonian. How-
ever, since

e‘AI;-Je"A:l:?-(rXp)~nz', (3.4)
with

A=m'[B,r) -6, (&, )], (3.5)
the incoming state with eigenvalue®?®

(k+3)? == m’ (3.6)

is simply related to an ordinary modified plane wave
[n is defined in (3.11), below],
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¥, =e " exp{ilk-r+nln(kr —k-1)J}. 3.7

This state exhibits the proper gauge covariance under
reorientations of the string. In (3.5), the appropriate
B’s are given by (2.18a) or (2.25).

The asymptotic form of the wavefunction is

P ~ gmim’Blarr) ?_—”‘{ Akjﬁyﬁ(;,)eim: ®

« L sin(kr—n1n2kr- 1L+5L>. (3.8)

kv 2
The summation in (3.8) is the general form of the solu-
tion when the singularity line is semi-infinite, extend-
ing along the +2z axis, as shown in Ref. 1. In particular,
_//g’; is a generalized spherical harmonic [»= (6, ¢}],

(jm’ | exp(ind,)exp (i 6J,)exp (i @J3) )

=expm’y)(2j + 1)/ 27 (7), (3.9)
8, is the Coulomb phase shift for noninteger L,
6, =argl(L +1 +in), (3.10)

and

L+t =[G+EF-m172, =y (et gg). (3.11)

Upon defining ¥_ . by®
v~eitexplilk- r +niner — k)b + ¥ 1, (3.12)
where A is given by (3.5), we find
v, = % o (kr-nlnzkr)eim'rf(@)_ (3.13)

In terms of the scattering angle, 6, which is the angle
between k and r, the scattering amplitude is?
2ikf(6) = lZ)[ VZTFL Y, (n =~ 6,0)expl~i(nL - 25,)].
i=lm*
(3.14)

The exira phase factor in (3.1§) is given by (where kis
characterized by ¢, ¢’ and =k by 7—6',¢" +7)

y=8,(, k) +o— ' Fr—ppk, 1)+ B,

1,10

(3.15)

where

—_ 4+ - P —_ ? 7
tan"%d):cos(g 172 e)sin<¢’ ;bxv)

, -1
x[cos (9—g+ b ) cos (¢ _2¢ ;W)] .(3.16)

Straightforward evaluation shows that

(3.17)

so that there is no additional phase factor in the out-
going wave. Thus the phase factor found in Ref. 1 multi-
plying the outgoing wave is, in fact, an overall phase
factor multiplying the entire scattering wavefunction. Of
course this clarification in no way changes either the
scattering amplitude or cross sections calculated there.

27 =0 (mod 27),

IV. SPIN

Classically, the electromagnetic field due to two
dyons at rest carries angular momentum [see (1.1) for
m’]
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Scla;sicalzm";' (41)

A quantum mechanieal transcription of this fact allows
us to replace the nonrelativistic description explored
above, in which the interaction is through vector po-
tentials (apart from the Coulomb term), by one in which
the particles interact with an intrinsic spin. The deriva-
tion of the magnetic charge problem from this point of
view seems first to have been carried out by Goldhaber?
in a simplified context, but it has recently been revived
for 't Hooft monopoles®? (where the spin is called
“isospin”).

Before introducing the notion of spin, we first con-
sider the angular momentum of the actual dyon problem.
For simplicity we will describe the interaction between
two dyons in terms of a single vector potential #, and
an infinite string satisfying (2.12). (The other cases
are simple variations on what we do here and the con-
sequences for charge quantization are the same as
found in Sec. II.) Then the relative momentum of the
system is

p=uv-m'A. 4.2)
Since
VXA =r/r®-£(r), 4.3)

we have the following commutation property valid every-
where,

wv X pv = —im’{r/v3 - £(r)]. (4.4)

Motivated by the classical situation, we assert that the
total angular momentum operator is

J=rXpv+m'y. 4.5)

This is confirmed*! by noting that, almost everywhere,
J is the generator of rotations:

%—[r,Jvéw]:éer, (4.6)

l[uv,J°5w]:5w><uv—m'f(r)x(éwxr), 4.7

{
where 5w stands for an infinitesimal rotation. The
presence of the extra term in (4.7) is consistent only
because of the gquantization condition.? For example,
consider the effect of a rotation on the time evolution
operator,

e~ *0%exp{- i f dt#{]et?*%% = expl— ifdt(/—/ + 3411

(4.8)
where
5H =ilH,T-bw]=m’v-[f{r)x5T], 4.9)
and
Sr=8wXr. (4.10)
Using the representation
f(!‘)=4nj;dx§[6(r—x)—ﬁ(r+x)], 4.11)

where C is any contour starting at the origin and ex-
tending to infinity, and the notation

dtv=dr,

we have
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—ifdtoH =-im'4r fdr- (@xxsr)5[6(r-x) -5 (r +x)].
4.12)

Since the possible values of the integral are 0, =3, +1,
the unitary time development operator is unaltered by a
rotation only if m’ is an integer. (Evidently, half-in-
teger quantization results from use of a semi-infinite
singularity line.)

Effectively, then, J satisfies the canonical angular
momentum commutation relations (also see the
Appendix)

1

-i-JXJzJ, (4.13)
and is a constant of the motion

d 1 _

- =7 [#,d]=0. (4.14)

And, corresponding to the classical field angular mo-
mentum {4.1), the component of J along the line con-
necting the two dyons, m’, should be an integer.

The identification of m’ as an angular momentum
component invites us to introduce an independent spin
operator 8. We do this by first writing!!

m? =S¥ (4.15)
and
Sxr
uv=p+ por (4.186)
which substituted into (4.5) yields
J=rXxp+8. 4.17)

We now ascribe independent canonical commutation
relations to S, and regard (4.15) as an eigenvalue state-
ment. The consistency of this assignment is verified by
noting that the commutation property for uv [(4.4)
without the f term] still holds true, and that S+#% is a

constant of the motion
[S-%, uv]=0. (4.18)

In this angular momentum description, the Hamiltonian,
(2.10), can be written in the form

1] ,,28°L  S-(S.%)? eies + 418,
= + + + 2182
H 2“-[[) 7.2 7.2 v ’
(4.19)
where the orbital angular momentum occurs,
L=rxp. (4.20)

The total angular momentum, J, appears when the
operator,

p527_12<(r°p)z+2¥_rep), (4.21)
is introduced into the Hamiltonian

Hzg%(bf#’z—y(ie;)z) +elez:g1g2 : (4.22)
In an eigenstate of J% and J - 7,

(B =i(j+1), - =m', (4.23)

379 J. Math. Phys., Vol. 19, No. 2, February 1978

(4.22) yields the radial Schrodinger equation solved in
Ref., 1. This modified formulation, only formally
equivalent to our starting point, makes no reference to
a vector potential or string.

We now proceed to diagonalize the S dependence of the
Hamiltonian, (4.19) or (4.22), subject to the eigenvalue
constraint

Se7=m'.

This is most easily done by diagonalizing the angular
momentum operator® (4.17). In order to operate in a
framework sufficiently general to include our original
symmetrical starting point, we first write S as the sum
of two independent spins,

(4.24)

S=8,+8,. (4.25)
We then subject J to a suitable® unitary transformation

J'=uJu-, (4.26)
where

U=expli(S, - é)@]exp[i(sb' o) 6 -7)], (4.27)

which rotates S,,, «# into £(S,,,);. This transformation
is easily carried out by making use of the representa-
tion in terms of Euler angles,

exp (iS * ¢ 6) = exp(—i$S,) exp(i6S,) exp(idS,).  (4.28)
The general form of the transformed angular
momentum,
d . S S
J=rxX|p+ = 8 a3 23
T [p y 510 (1+cos9 +1—cos(9>]
+7(S, =S,)s, (4.29)

is subject, a priori, only to the constraint (4.24), or
(5, ~S,);=m". (4.30)

We recover the unsymmetrical and symmetrical for-
mulations by imposing the following supplementary
eigenvalue conditions:

(1) 87, =0,
@) (S, +5,);=0.

(4.31a)
(4.31b)
These yield the angular momentum in the form (4.5),

the vector potential appearing there being, respectively,

(l)A:—%cotg, 4.32a)

@)A == ? coto, (4.32D)

which are (2.13) with n=%2.

The effect of this transformation on the Hamiltonian
is most easily seen from the form (4.22),

AT

making use of (4.21), or

] Ul=p2 + ,,Lz(rx uv)?=(uo)?, (4.33)

HI=UHU =1 pp? + eiert g8

po (4.34)

So by means of the transformation given in (4.27) we

have derived the explicit magnetic charge problem,
expressed in terms of J’ and //’, from the implicit
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formulation in terms of the spin. These transforma-
tions are not really gauge transformations, because
the physical dyon theory is defined only after the eigen-
value conditions (4.30) and (4.31) are imposed. The
unsymmetrical condition (1) [(4.31a)] gives rise to the
Dirac formulation of magnetic charge, with a semi-
infinite singularity line, and, from (4.30), m’ either
integer or half-integer. The symmetrical condition (2)
[(4.31b)] gives the Schwinger formulation: an infinite
singularity line [with (2.12) holding], and integer
quantization of #’. These correlations, which follow
directly from the commutation properties of angular
momentum (the group structure), are precisely the
conditions required for the consistency of the magnetic
charge theory, as we have seen in Sec. II,

Even though the individual unitary operators U are
not gauge transformations, a sequence of them, which
serves to reorient the string direction, is equivalent
to such a transformation. For example, if we formally
set 5 =0 in (4.27),

U, =expliSe (6 -1)],

we have the transformation which generates a vector
potential with singularity along the positive z axis,

(4.32a), while
U, =expliS-u,© —7)]

(4.35)

(4.36)

generates a vector potential with singularity along n,
(2.13a), where © is the angle between n and r,

c0sO = cos § cosy + sinf siny cos(¢p — ) (4.37)
[ the coordinates of n are given by (2.16)], and
nxr
= Taxrl - (4.38)

The transformation which carries (4.32a) into (2.13a) is

Uey= Uy Uy - 4.39)

Since U,, reorients the string from the direction z to

the direction n, it must have the form

Uhey = exp(iS +nd) exp(~ ¢S+ @X) (4.40)

The angle of rotation about the n axis, &, is most
easily determined by considering the case S=+0, and
introducing a right-handed basis,

nXxr
u =n, uzzm, u3:n><u2. (441)
Then, straightforward algebra yields
inl 1y _ opel ggind -
coste = singfcosiy co§2?51n2xcos(<¢> ») (4.422)
sinz 6
and
1 gaindvai _
sinid = cosi bsindxsin{¢ —¥) (4.42D)

sinO
The corresponding transformation carrying the vector
potential with singularities along the negative z axis
[(4.32a) with 6— 6 — 7], into the vector potential with
singularities along the direction of —n [(2.13a) with
n— —nj, are obtained from (4.40) and (4.42) [see also
(4.35) and (4.36)] by the substitutions

f—6+n, O—O+7. (4.43)
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The combination of these two cases gives the transfor-
mation of the infinite string, for which (4.27) is the
prototype.

Since the effect of exp(-iS- ix) is completely given by

exp(—iSe @X)Ssexp(és «Jx}=Se-n, (4.44)
that is, for the transformation (4.40),
¢ .8 .
Us) [rx (p + ” cot 3 Ss) - 7’53] U(iz)
, é 8 .
=exp(iS.nd) [rx{p+ - cot 5 S+n)-#S+'n
X exp(- iS - nd), (4.45)

in a state where S-n has a definite eigenvalue, —m’,
U2, is effectively just the gauge transformation which
reorients the string from the z axis to the direction n.
And, indeed, in this case,

¢ =16, (mod 2r), (4.46)

where 3, is given by (2.18a) as determined by the dif-
ferential equation method.

V. CONCLUSIONS

There is no classical Hamiltonian theory of magnetic
charge, since, without introducing an arbitrary unit of
action, ¥ unphysical elements (strings) are observable.
In the quantum theory, however, there is a unit of
action, %, and since it is not the action W which is ob-
servable, but exp(iW/f), a well-defined theory exists
provided charge quantization conditions of the form
(1.1) or (1.2) are satisfied. The precise form of the
quantization condition depends on the nature of the
strings, which define the vector potentials. It may be
worth noting that the situation which first comes to
mind, namely, a single vector potential with a single
string, implies Schwinger’s symmetrical formulation
with integer quantization.?

We have Seen in the nonrelativistic treatment of the
two-dyon system that the charge quantization condition
is essential for all aspects of the self-consistency of
the theory. Amongst these we list the nonobservability
of the string, the single valuedness and gauge covari-
ance of the wavefunctions and the compatability with
the commutation relations of angular momentum. In
fact, all these properties become evident when it is
recognized that the theory may be derived from an an-
gular momentum formulation, 34

APPENDIX: SINGULAR GAUGE TRANSFORMATIONS

We here wish to show that it is precisely the singular
nature of the gauge transformations (2.14) and (4.33)
which is required for the consistency of the theory, that
is, the nonohservability of the string. To illustrate
this, we will consider a simpler context than that of
the text, that is, an electron moving in the field of a
static magnetic charge of strength g, which produces
a magnetic field

>
H=g —. Al
g 72 (A1)
The string appears in the relation of H to the vector
potential, :
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(A2)

where the string function f satisfies (2.6). Reorienting
the string consequently changes A,

H=VXA+ gf(r),

A— A, (a3)
which induces a phase change in the wavefunction,

v— ¢’ =exp(id)y. (a4)
The equation determining A is (2.15),

VA = e(A’ - A), (A5)

which makes manifest that this is a gauge transforma-
tion of a singular type, since

VXVA#0. (a6)

Recognition of this fact is essential in understanding
the commutation properties of the mechanical
momentum,

T=p-eA, A7)
Since
X7 ==VXV +ie(VXA). (a8)

(Here, the parentheses indicate that Vv acts only on A,
and not on anything else to the right.) Consider the
action of the operator (A8) on an energy eigenstate .
Certainly vX vy =0 away from the string; on the string,
we isolate the singular term by making a gauge trans-
formation reorienting the string,

p=exp(=iA )l

where ¥’ is regular on the string associated with A,
Hence

(A9)

0 off string,
i(VX VA)) on string,

so by (A5) and (A2),
~VxVy(r)=iegf(r i (r).

Thus, when acting on an energy eigenstate [which
transforms like (A4) under a string reorientation],
(A8) becomes

mxX7—ie[(VXA)+gf(r)] =ieH.

(a11)

(A12)

This means that, under these conditions, the commuta-
tion properties of the angular momentum operator
(4.5),

J=rXn-egr, (A13)
are precisely the canonical ones

:T[r,J°5w]~5wxr, (A14a)

¥[w,J»5w]»5w><n. (A14Db)

B

In Sec. IV, we considered the operator properties of J
on the class of states for which VXV =0, so an addition~
al string term appears in the commutator (4.7). Never-
theless, in this space, J is consistently recognized as
the angular momentum, because the time evolution
operator is invariant under the rotations generated by

J. Here, we have considered the complementary space,
which includes the energy eigenstates, in which case
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the angular momentum attribution of J is immediate,
from (A14).

Incidentally, note that the replacement (A12) is nec-
essary to correctly reduce the Dirac equation des-
cribing an electron moving in the presence of a static
maghnetic charge,

(yr +mhp =0,

to nonrelativistic form, since the second order version
of (Al5a) is

(r®+m?-eoc-H)p =0,

(A15a)

(A15b)

where H is the fully gauge invariant, string independent,
field strength (A1), rather that (VXxA), as might be
naively anticipated.!® (This form validates the con-
sideration of the dipole moment interaction of Ref. 1,
where the nonrelativistic scattering, including anom-
alous magnetic moment contributions, was analyzed
numerically.)

Similar remarks apply to the non-Abelian, spin,
formulation of the theory, given by (4.19), If we de-
fine the non-Abelian vector potential by

SXxr

eA=- =%, (A16)

the mechanical momentum of a point charge moving in
this field is

T=p—eA, (A17)
and the magnetic field strength is determined, analo-
gously to (A12), by

eH:% aX7=(VXeA)- jeA XeA=-8-%

ﬁw}‘ﬁ)

(A18)

This reduces to the Abelian field strength (Al) in an
eigenstate of S+ 7,

(A19)

which is a possible state, since S+# is a constant of the
motion,

[S-#,7]=0.

(S“;),:_ega

(A20)

The Abelian description is recovered from this one by
means of the unitary transformation (4.28),

U= exp(- i$S,) exp(i6S,) exp(E¢S,). (A21)

Under this transformation, the mechanical momentum,
(A17), takes on the Abelian form,

[7}
Ss tan <

=1 — +A—
UnU p d)y 37

(A22)

where we see the appearance of the Abelian potential

~

6
eA:-saif; tan 7, (A23)

corresponding to a string along the —z axis. In an
eigenstate of S,
St =(US:#U") = - eg, (A24)

this is the Dirac vector potential. To find the relation
between this vector potential and the field strength, we
apply the unitary transformation (A21) to the operator
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eH=VXeA +eAXV —jeAXeA (A25)
to obtain'®
UeHU-1= (VX eA) = iUV X VUL = (V X eA) = S,f(r),
(A26)
where f is the particular string function
£(r) = - drkn(= 2)6 ()3 (»), (A27)

7 being the unit step function. In this way the result
(A2) is recovered.
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The energy dependent transport system in an anisotropic medium in slab geometry subjecting possible
internal source ¢ and incoming fluxes s, Y, is discussed. It has been shown in an earlier paper that
under certain conditions on the average number of secondary neutrons per collision ¢, the scattering cross
section o, and the optical slab length 2q, this system has a unique nonnegative solution for all inputs g,
Yo, W;. The aim of this paper is to establish analogous conditions on ¢, o, a so that the system has no
nonnegative solution when there is either internal source or incoming fluxes (or both), and it only has the
trivial solution when neither internal source nor incoming fluxes are present in the system. This conclusion
together with the earlier results yield explicit conditions for insuring the supercriticality and the

subcriticality of the energy dependent system and therefore lead to analytical upper and lower bounds for

the critical value ¢* in terms of o and a.

I. INTRODUCTION

In a previous paper the author! discussed the critical-
ity and subcriticality question for the energy dependent
neutron transport in an anisotropic homogeneous medium
in slab geometry. The main result in that paper is the
establishment of some explicit conditions on the constant
¢, the average number of secondary neutrons per colli-
sion, in terms of the scattering (including fission)
cross section ¢ and the optical thickness 2a of the slab
50 that the energy dependent system is subcritical; that
is, the system has a unique nonnegative solution for
every internal source ¢ and incoming fluxes ¢, ¥;. The
purpose of this paper is to establish some analogous
conditions on ¢ in terms of o, a so that the energy-de-
pendent system has no nonnegative solution for any in-
ternal source and incoming fluxes and it only has the
trivial solution when there is neither source nor incom-
ing fluxes. The nonexistence of a solution for every in-
homogeneous boundary value problem and the existence
of only the trivial solution for the homogeneous problem
insure that the system is supercritical (see the defini-
tion in Sec. 2). These results extend those obtained in
Ref. 2 for the case of the monoenergetic system, Since
the condition for supercriticality given in this paper and
that established in Ref. 1 for subcriticality are both ex-
plicit they can be readily used to determine whether and
when it is possible or not possible to find a physically
meaningful solution. As an example, our results show
that if [o(-,E’}dE’ > 1 and ¢ > 2[1 - E,(2a)]"!, where E’
is the energy variable, and E,(z) is the second order
exponential integral [see Eq. (2.18)], then it is impos-
sible to find a solution by any existing method when ¢,
iy, ¥; are not all identically zero. However, there al-
ways exists a unique solution when [o(+,E’)dE’ <1 and
¢ <[1 = Ey(a)]"* (cf. Ref. 1), More specific conditions on
¢, 0, a for the nonexistence problem are given in the
following section. These conditions together with those
obtained in Ref. 1 lead to some explicit upper and lower
bounds for the critical value ¢* of the energy dependent
system.

2.SUBCRITICALITY AND SUPERCRITICALITY

Consider the energy-dependent neutron transport in
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an anisotropic homogeneous medium in slab geometry
with its faces located at x =— @ and x =a. If the system
is subjected to an internal source ¢ and incoming fluxes
¥y, ¥y at the slab faces, then the neutron density N
=N(x, i, E) is governed by the equation

AN c (51 1 A
“?X-+N_2‘/EVO L O(I-‘L,E;IJ‘ aE)

XN(x,p', E'Ydu' dE’ +q(x, u, E) 2.1)

(~asx<a), —1sp<l, E,SESE),

and the boundary condition

N(—(l,}.L,E):Z,D()(}J.,E) (0<}J~ Sl! EOsE§E1),

N(H,U,E):U/&(H,E) (—1$M<Oy EOSEgEl)’

(2.2)

where c¢ is the average number of secondary neutrons
per collision, u is the direction cosine relative to the

x axis, (E,, Ey) is the energy interval, and o is the scat-
tering (including fission) cross section which satisfies
the condition

E 1
2 N ol Eyp ) dpr dE <1,
) I

As in Ref. 1 we have taken the total cross section as
one so that 2a should be considered as the optical thick-
ness of the slab. For physical reasons we assume that
0, ¢, ¥y, ¥; are all nonnegative continuous (or piecewise
continuous) functions of their respective arguments.

We also assume that o(u, E;p’, E’)=0(u', E'; u, E).

It is shown in Ref. 1 that the boundary value problem
{2.1), (2.2) can be reduced to the integral equation

N(x,u, E)=(FIN)Nx, 11, E) [(x,u, E)e D],
where D =[-a,a]x[-1,1]X[E,, E,] and
FWN)x, 1, E)

(2.3)
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exp[- (v +a)/uJibo(n, E) + fo(mw exp(= 7)(fN))
X{x—Tu,u,E)dr (0<p<1),

= (fWN)(x,0,E) (1 =0) (2.4)

exp(- 7)(f(N))

exp[(a—x)/u]zpl(u’E)+f0(a-x)/(-u>

(x=Tu,u,E)dT (~1<p<0)
(~a<x<aq,Ey<E<E,).

In the above relation the function f(N) is given by

e 2= [ [ o, 5,5
).

XN, u',E)Ydp'dE" +q(x, ., E).
(2.5)

Our investigation for the subcriticality and the super-
criticality of (2.1), (2.2) is based on the integral form
2.3).

We say that the system (2. 3) is subecritical if for
every internal source ¢ and incoming fluxes ¢, ¥ this

system has a unique nonnegative solution; it is said to be

critical if the corresponding homogeneous system (i. e.,
q =¥, =¥, =0) has a nontrivial nonnegative solution; and
it is called supercritical if (2. 3) has no nonnegative
solution for any gq, ¥,, ¥;, not all identically zero, and
it only has the trivial solution when q, ¥, ¥ are all
identically zero.

For notational convenience, we set
o(u’', E)=suplo(p,E;u’,E'); ~1sps1, Eg<E<E(},
o(u’,EN =inf{o(u, E;u', E"); ~1<u <1, E\SE<E4},

Gulu) =mad [ 15w, BV dE", fEEO‘a(—u',E')dE'},
E
o, ") =min{ [ o', BVE", [ 1o(-p’, E")dE").

(2.6)
Notice from the hypothesis o(u, E; p’, E’)
=o(u',E’;p,E) that 6(u’, E')=3(u, E) and o(u’, E’)
=0(u, E). Before discussing the supercriticality of the
sy—stem we state the following theorem from Ref. 1.

Theovem 2.1: Assume that o(p’, £’) > 0 and that

¢ [, Gyl - exp(-a/w))dp’ <1, (2.7
Then for any nonnegative inputs ¢q, ¥,, ¥; the integral
equation (2. 3) has a unique nonnegative solution. In
particular, the homogeneous system (i.€., g =9, =9
=0) has only the trivial solution N =0.

The result in Theorem 2,1 implies that under the con-
dition (2. 7) the transport system is subcritical, As a
direct consequence of Theorem 2.1 we also have

Corollary 1: Assume that o(u’, E’)>0, 0,(1n’)<1 and
¢ <[1-E,(@?!"'. Then the system (2.3) is subcritical.

Proof: This follows from Theorem 2.1 using the re-
lation

¢ J; Tulu)t - expl—a/nNdu’

<c fol (1 - exp(-a/p"dp’ =c(l - Ey@))<1.
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In order to obtain a sufficient condition for the super-
criticality of the system we first prepare the following
lemma.

Lemma 2.1: Let N(x, i, E) be a nonnegative solution
of (2.3) and let o(u’, E’) >0 on (- 1,1)X(E, E,). Set
By 1
gW)=f; ' J, oW, EING, 1, E)dpdE (—a<x<a),
(2.8)

If the functions N, @, ¥; are not all identically zero,
then g(x) >0 for every —a sx <a.

Proof: Multiplication of (2.3) by o(u, E) and integra-
tion over (- 1,1)X(E,, E,) yield

gx) = fjgl fo1g(H,E}exp(—(x-q—a)/u)%(ﬂ,E)dp dE
+‘sz1 f; fo(m)/u exp(- 7)o (u, E)fN)(x - T, u, E)

Xdrdp dE

+ fEEoi f_? oy, E) exp((a - x)/u)9; (i, E)dy dE
N fs? L1 expte Mo, B AW)

X(x—TW, u, E)dTdudE. (2.9)
Replacing u by (- i) in the last two integrals and us-
ing the relation (2.5) for f(N) we obtain

By 1
g(x)Z/ f [o(k, E) expl= (x +a)/pn)y(u, E) +0(~ u, E)
E, 0

Xexplla - x)/ (= p)¥ (- 1, E))dp dE

Ey 1 (x+a) /o
+f [f exp(- T)o(p, E)g(x — T, u, E}d7T
E0 0 0 -

{a=x)/pn
+f exp(~ 7)ol u, E)glx + Ty, -u,E)dTJdu dE

0
E 1 f xea)/ c (B [t
fiff 9/% exp(- To(u, E)l s o(u’, E")
+ - 2 Je, Ja-
£, Jo Jo b

XN{x-Tu, p',E')deE’) drdu dE

By 1 (lax)/u c [F1
ey o
By, Jo Jo B, J-i

XN +Tu, 1’ E')du’dE’) drdy dE

=1 (x) +I(x) +I3{x) +I4(x), (2.10)
where I;(x), {=1,...,4, represent the four integrals

in (2.10). Let x, be a point in [— a,a] such that glxy)
=inf{g(x); - a <x <a}. Then we have: (i) I,(xo) > 0 when
either ¥, #0 or ¥, #0; (ii) L, (xy) = 0 when ¢ = 0; and (iii)
Ii(xy) + I,{x¢) > 0 when N# 0, The result in (ii) is obvious.
To show (i) we observe that if $,#0 on (0,1) %X (Ey, E|)

or ##0 on (- 1,0)%(E,, E,) li.e., # (-, E)#0 on (0,1)
X{E,, Ey}}, then for every x € [—a,a] the integrand in the
first integral in (2. 10) is strictly positive in some sub-
domain in (0, 1) X (E,, E,) and thus the whole integral is
positive. This implies, in particular, that I,{x;) >0
which proves (i). Since for any x e [-a,a], pc[0,1],
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—as<x-Ty <x for 0s7<(x+a)u,
A<Sx+Tu<a for 0<T<(a-x)/4. (2.11)
We see that if NZ0, then either N{xq— Tu,u,E)>0

for 0 <7< (xy, +a)/i in some subdomain of (- a, x,)
X(=1,1)X(Ey, Ey) or N{xy+7p, 1, E)>0for 0<s7<(a

- xo)/u in some subdomain of (x4, a)X(=1,1)X(E,, E,).
In any case, at least one of the integrals in the bracket
in the third and fourth integrals [i.e., in I(x) and
I,(x)] of (2.10) is strictly positive for the indicated
intervals of 7. In view of (2.11) we have either I5(x,)
>0 or I;(x,) > 0 which leads to the result in (iii). It fol-
lows from (i)— (iii) that g{x¢) > 0 and therefore g{x) >0
on [-a,a]. This proves the lemma.,

Remark 2.1: Although the requirements of N#0 and 0
>0 insure that g(x)#0, the positivity of g(x) may not
hold for every xc [- a,a] if N is not a solution of (2. 3),
In fact, if N is an arbitrary nonnegative nonzero func-
tion, then at any point x; where N(x;, u,E)=0on (- 1,1)
X (E,, E,) we have g(x;) =0. Thus the assumption of N
being a solution of (2. 3) is essential in the proof of
Lemma 2.1. Notice that I;(x;) > 0 when either ,#0 or
¥, Z0 but it is not always true that I,(x;} > 0 when g #0.

Using the result of Lemma 2.1 we now prove the
following theorem.

Theovem 2.2: Assume that o(u’, E’) >0 and

t
—;—f Ol )L = exp(- 2a/p’))dp’ > 1. 2.12)
0 -
Then given any inputs q, ¥,, ¥, the system (2. 3) has no
nonnegative solution when ¢, ¥;, ¥ are not all identical-
ly zero; and it only has the trivial solution when g, ¥,
Yy are all identically zero.

Proof: Assume that N is a nonnegative solution of
(2. 3) when ¢q, ¥,, ¥ are not all identically zero. Clearly
N#0 and thus by Lemma 2.1, g(x,)=infg(x)> 0 for
some x, in [~ a,a]. Since by (2. 8).

glxg) < f f
for every z € [- a,a], and since the points z =xy— Tu with
0sT<(xy+a)/p and z=x,+ Ty Wwith 07 < (@ — %)/ are
all in [- @, a] we see from the definition of I;(x), I,(x)
that

E 1
Is(xo)Z—g—g(xo)f 1[) (i, E)(1 - expl- (x; +a)/u])dudE
E

14(x0)>—-g %) / f

It follows from (2.10) with x =x; that

w,E' )Nz, u', ENdp'dE’

-, )1 - expl- (a-x,)/u])

Xdy dE. (2.13)

i
o) 1) + L) + S [ 00

X[2 = exp(~ (xy +a)/u) - exp(- (@ = x,)/1)]dpe.
(2.14)

Since for each u > 0 the function p{x) =2 - exp(- (x
+a)/u)— exp(- (@ — x)/1) possesses the property that
“<0 for all x, the minimum of p on [~ a, a] occurs at
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x =+a and is equal to (1 — exp{- 2a/u)). This implies
that

1
g(xo) 211(560) +Iz(xo) +%g(xo)£ EM(H)(I ~ exp(- 20/“ ) du.

(2.15)

But by the hypothesis (2.12) and the fact that J; (xy)
+1,(xy) = 0 and g(x,) > 0 the above inequality is impos-
sible. This contradiction shows that there exists no
nonnegative solution when g, i, ¥; are not all identical-
ly zero. In the case of ¢ =9, =9, =0, then I (xy) =1I,(x,)
=0 and thus (2.15) is reduced to

1

glxq) >§g(xo)/0 9, (L)1 = exp(= 2a/u))dp. (2.16)
In view of (2.12) the above inequality is impossible un-
less g(xy) =0, However this insures that N=0, for other-
wise Lemma 2.1 implies that g(x;) > 0. Therefore, the
only solution of (2.3) is the trivial solution N =0 when
q, ¥y, Y1 are all identically zero. This completes the
proof of the theorem.

Remark 2.2: 1t is seen from (2.15) that if ¢, ¥; are
not both identically zero then the system (2.3) has no
nonnegative solution even when the left side of (2.12) is
equal to one.

It is interesting to note that if ¢, (u’) can be written as
a polynomial of the form

o () =ag+ap’ +eor +a, (W,

then the condition (2. 12) for supercriticality is reduced
to
c & -1
~2-20a,,[(n+1) -E,,(2a)]>1, (2.17)
n=
where E,(z) is the nth order exponential integral defined
by

° 1
E,,(Z)Ej; t"'exp(—zt)dt:f0 "2 expl~z/u)dy,
n=0,1,2,+++.(2.18)

Similarly, if @,{u")=>by+byu’ ++++ +b_(u’)", then the

condition (2, 7) for subcriticality becomes

cZ}b[n+1 ~E, ,(@]<1. (2.19)
Since the values of E,(z) have been tabulated in standard
tables (e.g., see Ref. 3), numerical values for ¢ in
terms of a (or vice versa) can immediately be obtained
from (2.17) and (2.19), respectively. In the special
case of isotropic medium, o(u,E;u’,E’)=0(E,E’) is in-
dependent of (u, u’) and thus @, (u’), 0,,(L’) become the
constants

GMf

In view of Theorem 2.1 and 2.2 we have the following
conclusion,

E
G(E')dE", om:fE‘ (2.20)

o o(E’)dE",
)2

Theorem 2.3: Assume that 0=0(E, E’) is independent
of (4, u’) and 0(E’) > 0. Then the system (2, 3) is sub-
critical if

8y <[1- Ey(a)]?; (2.21)
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while it is supercritical if

co,, > 2[1 - E,(2a)]™. (2.22)

Thus the critical value c* of the system is bounded by
[0y - Ey@)]™ < c* <2[0,(1 - E5(2a))]". (2.23)

When the transport system is energy independent the
equations governing the density function N=N(x, p) are
given by

oN

i
¢ '
u—+N:—f o*(u, LN (v, p”)dp’ +qlx, 1)
ox 2 J.4

(~asx<a, ~1=sp<1), (2.24)

Ni—a,p) =) O<p=<1),
N, p)=u ) (~1=sp<o0).

The above system can be deduced from (1.1), (1.2) by
considering N, q, ¥, ¥ independent of E, o=0(u;u’, E'),
and

(2.25)

cr*(u,u')=fEEO1 olu; ', E)dE".
Using the notation

o (') =sup{o*(u, u’); —1<p <1},

o*(u!) =inf{o*(u, u’); - 1< p <1},

Th(u’) =max{T*(u’), T*(- p)},

ax (i) =min{o*(u"), o* (= p )},

and considering (2.24), (2,25) as a special case of
(1.1), (1.2) we can deduce the following results from
Theorems 2.1 and 2. 2. These results have already
been established in Refs. 1 and 2 by considering (2. 24)
and (2. 25) directly.

(2.26)

Corollary 1: Assume that o*(u, u’)=0*(u’, 1) and
o%(i’) > 0. Then the system (2.24), (2.25) is subcritical
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if
1
¢ J. T - exp(-a/u"))du’ <1, @.27)
and it is supercritical if
i
%/; IH (1)1 = exp(= 2a/p’))dp’ > 1. (2.28)

In the special case of monoenergetif, isotropic medi-
um we may take o* =1, In this situation we have the
following simple criteria for the subcriticality and
supercriticality of the system.

Corollary 2: For monoenergetic, isotropic medium
the system (2.24), (2.25) is subcritical if

c<[1-Eya)]?, (2.29)
and is supercritical if

c¢>2[1-E,Qa)]". (2.30)
Thus the critical value c¢* is bounded by

[1-E,@)]! < c*<2[1-E,2a)]". (2.31)

Remark 2.3: 1t is interesting to note that the differ-
ence between the upper and lower bounds of ¢* is small
for small values of slab thickness (2a) and grows larger
as a increases. However, the upper bound is at most
twice as much as the lower bound. For numerical ex~
amples, these bounds are given respectively, by
(19.87,23.02), (3.60,4.70), and (1.17,2,08) when a
=0.01, 0.10, and 1.00. The limiting case as ¢ — = is
1< c* =2 (cf. Ref. 2).

1C,V. Pao, J. Math, Phys. 18, 544 (1977).

’C,V. Pao, “Supercriticality of neutron transport in an aniso-
tropic slab medium” Transport Theory Stat. Phys, (to
appear).

3M. Abramowitz and 1. A. Stegun, Eds; Handbook of Mathewna-
tical Functions (Dover, New York, 1965).
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Interaction and stability of localized solutions in a classical

nonlinear scalar field theory?®

Luis Vazquez”

Department of Mathematics, Brown University, Providence, Rhode Island 02912

(Received 16 May 1977)

The interaction between the localized solutions of a nonlinear scalar field theory are studied. We also
study the stability of the above solutions under certain time-dependent perturbations.

I. INTERACTION BETWEEN LOCALIZED SOLUTIONS

We consider the solvable nonlinear scalar field' based
on the Lagrangian density

2
L=(5) - o aet s o o

with ¢ =¢(x, 1) a real scalar field, g a positive constant
and the constant 7 < . The field equation associated
with (1) is

~ G + A+ 3g0° + (h/7 ) =0, (2

which admits the spherically symmetric static solutions
of the form

VAL

O =[a/g 7%+ P ®
with the conditions 8 =+ 2(1 ~ 4k)*/2
a=(B-2)/4 (4)

and where Z is an arbitrary constant. The energy as-
sociated with the solution (3) is

E=}{Exp’ = Ep(1 - 4h), (5)

where Ep =72/2g/? is the energy obtained by Rosen in
the case B =2.2

Let us now consider the interaction between the local-
ized solutions (3):

(A) If ¢y and ¢, are two solutions with constants Z,
and Z,, then we get the solution

F(Z,, z)w
" [(4g/BVF 2y, 2)) + FTT

where F{Zy, Z,) is any function of Z; and Z,. In parti-
cular if F(Z,,Z,)=Z1+Z, then ¢(¢y, ) =+ p(ds, Oy).

The above fact suggests the following rule for the
superposition of two spherically symmetric solutions of
(2):

o' =22%(23/9t + Z/03)", Z=[(Zi+2D/21t . (6)
Here ¢ describes a localized solution with the same en-
ergy as either ¢; or ¢,. Thus we can interpret ¢ as a

bound state of ¢, and ¢, such that the bound state en-
ergy is the mass of either ¢; or ¢,. Assuming Z, > Z,,

¢(¢1; ¢'2

#Research supported by a fellowship of the Program of Cultur-
al Cooperation between the United States and Spain,

Y0On leave from Departamento de Fisica Teorica, Universidad
de Zaragoza, Zaragoza, Spain,
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we have that ¢ =2!/%¢, when »—~0 and ¢ *2"'/%¢; when

¥ =0,

The above results hold for » localized solutions; in
particular, we get

2 -1 1& 1/4
¢? ~nz2(> —§> , Z:(—Z}Z%) ) ("N
i=1 ¥i "
(B) Equation (2) also admits the solution
_ Zlr- £1*
o= =@z v e P (®)

where £ is a constant vector, which locates the center
of the localized solution. For the superposition of local-

ized solutions of the form (8) when 8 =2 (¢ =0), we have
the following rule:
LA
o' =nZ (>_, —5) ©)
i=1 95
n n n \21/%
z=[I 2 2 (B, ]
N =1 i=1 R\

where r; is the constant vector associated with ¢;.

(C) Let us find the static force between two localized
solutions by the method of Rosen et al.® The method in-
volves integration of the normal component of the en-
ergy—momentum tensor T*” over a surface enclosing
the localized solution, which then yields the force on
the “particle.”

Consider two localized solutions centered at points
ry=(0,0, - R/2) and r, =(0, 0, R/2) at time £=0. The
separation R is assumed to be much larger than the
sizes (4Z%g/8")'/® of the localized solutions. Suppose
we have the initial conditions for Eq. (2)

¢(r, 0) = P1{r — r1) + dp(r ~ 1ry), (Ba_?> =0. (10)
] te0

To find the force on localized solution ¢,, we have to
compute the surface integral of 7%¥ over a surface en-
closing the center of ¢, but excluding the center of ¢;.
Following Rosen, we take the unbounded surface pre-
scribed by Z =0. Since in this case ¢; are with cylin-
drical symmetry about the Z axis, the force on ¢, is

F'=F'_y,

. (11a)
F— fzzo T dx dy,
where
T = ¢} ~ = 0%+ 2+ g0° + /P ¢ (11b)

© 1978 American Institute of Physics 387



In the limit of large R, we obtain

7 :_G 25/2%>[162122 —(B-2)(Z, -2,

1

X RG*2)/2

(12)
which corresponds to the potential energy

V:_(Ezwﬁ.*_z)[mzlzz — (B -2z - 22

1
2 B+6 RFTT:

(13)
As we can see when 8 >2 (0 <8 <2) we have the anti-
Coulomb interaction obtained by Rosen* plus a repulsive

(attractive) interaction, which corresponds to the re-
pulsive (attractive) scalar potential in Eq. (2).

o | b

When B =2, with the help of (9) we get the localized
solution X as a superposition of ¢; and ¢, given in (10)
as

VA
X= g AT

Z:(Z§+Z§+_1_Rz> /e

2 2g ’

Now if in {10} we consider ¢(r, 0) =X and ¢,(r, 0) =0,
then 2= 0. This means that the state represented by

X is a static state of two localized solutions and there
is no force between them. But the above state X is un-
stable because, if ¢,(r,0)#0 it follows from (11) that a
force F® appears between ¢; and ¢,.

(14)

Il. STABILITY OF THE LOCALIZED SOLUTIONS

Let us now consider the stability of the solutions (3)
under scalar perturbations acting in a short time.

(A) We have the same Lagrangian (1) plus the
interaction

Li=le(/7]e" (15)
with ¢ =sin{nt/T) if [0, T] and @ =0 otherwise. The
field equation is

— g+ AP +3g0° +H{[n+ @)/ =0.

Numerically (the Appendix), we studied the Eq. (16) with
the initial conditions:

(186)

Zy¥*
é(r, O)ZW ) (17)

¢t(ry 0) - 0-

We considered the three cases 8 = 10, 15, 20 for which
o(r, 0) is concentrated near »=0. Also we studied the
perturbation for three values of T Z 75, where 74 is the

TABLE 1.

t [ & | max(®) E
0.00 0.708(1.) 3.93
0.04 0.709(1.) 3.78
0.08 0.711(1,) 3.83
0,12 0.713(1.) 3,93
0.16 0.718(1.) 3.93
0.205 0,728(1.) 3.93
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TABLE II,

t 1@ linax(®) E

0,000 0,708(1.) 3,937
0,004 0,989(1.) 6420.18

0,006 2,243(1.) 125637.21

0,008 o0

lifetime of the corresponding state. ! The behavior of
the solution is the same in all cases. The energy as-
sociated with ¢ (7, #) changes in the interval {0, T], re-
maining constant when > T and such that E(0) = £(T).
Also | ¢(r, £) |, increases continuously, even when
t>T. Thus we can expect unbounded growth in ¢ for
as t—~=, For the case

=20 (1,=0.08), Z=1, g=100, T=0.1 (18)

we represent in Table I the variation of | ¢ |, and the
energy £. The weakness of the perturbation represent-
ed by (15) is reflected in the fact that when it stops at
t=T, there is a negligible variation in the shape of ¢
compared with its shape at £ =0. Also at /=7 we have
o, /¢ <10,

(B) As above, we consider the Lagrangian (1) but
with the interaction

Li=0h)e® (19)
with ¢(#) the same as in (A). The field equation is
— by + AP +3g0° + (/)¢ + @(H)p =0. (20)

We proceed as before, considering the same cases,
and we find the same behavior in all the cases except

P(rt)

~

&

(=]
T

1.80

1.50—

0.90L

0.60

0.30—

0 38 075 113 1.50 188 225 2.63

r

FIG. 1, Time development of the amplitude ¢(»,t) correspond-
ing to the Eq. (20) with initial conditions (17)—(18), The time
and space intervals are Af=0,002 and Ar=0.002,
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for the behavior with the interaction given by (15), for
which the amplitude ¢ increases without bound in a very
short time. The effect of the interaction given by (19)
must be stronger than that given by (15) in order to de-
stroy the localized solution. We represent in Table II
the variation of ¢!, ,, and the energy £, while in Fig.
1 we illustrate the time development of ¢(»,?), for the
initial conditions (17), (18).
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APPENDIX

Equations (16) and (20) are particular cases of the
equation

Uy = U, = 2U, /v~ 3gU° + g(r, hu=0. (AD
With the change V=7»U, we get
3
V, - V,,—;§V5+q(7, HV =0 (A2)

with V(0,#) =0. For numerical purposes we replace
(A2) with®
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vl ogve 4+ v
(&t -

Vin-2Vi+Via
{ar)?

-1y6
(ﬁ;ﬂ —Jﬁ———{——vn, "é,,vn ) +q(jar, nat) (Vi + Vi =0,

(A3)
The

where Af and Ar are the time and space intervals.
function V(r, #) is approximated by V] = V(jAr, naf),
When ¢ is time-independent, the quantity which approxi-
mates the energy

vl vr\? ( "'1_1/*5'1)( _V'.')
i i i+l i+l
?AT{( At ) * Ay Ay

~ 2—(;%;)1 [V3H® + (V)*]+ 2gGan(Vy™h? + (V)P])

(A4)
is conserved.®
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On equivalence of parabolic and hyperbolic super-
Hamiltonians?

Karel Kuchar

Department of Physics, University of Utah, Salt Lake City, Utah 84112
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Three types of super-Hamiltonians occur in generally covariant field theories: linear in the momenta
(hypersurface kinematics), parabolic in the momenta (parametrized field theories on a given Riemannian
background), and hyperbolic in the momenta (geometrodynamics). Three simple models are discussed in
which the linear or parabolic super-Hamiltonian can be cast, essentially by a canonical transformation,
into an equivalent hyperbolic form: (1) The scalar field propagating on a (14 1)-dimensional flat
Minkowskian background, (2) hypersurface kinematics on a (14 n)-dimensional flat Minkowskian
background, and (3) geometrodynamics of a (1+2)-dimenstonal vacuum spacetime. The implications for

constraint quantization are mentioned.

1. INTRODUCTION

Parametrized Hamiltonian dynamics of tensor
fields propagating on a given geometrical background!
resembles in most respects the Hamiltonian
geometrodynamics,? in which the fields are coupled
to geometry by Einstein’s law of gravitation, In
both theories, the Hamiltonian is a linear combina-
tion of the constraint functions, called super-Hamil-
tonian and supermomentum. The coefficients of
this linear combination enter the action as Lagrange
multipliers and have the same geometrical interpre-
tation in both schemes, suggested by their accepted
names, the lapse and the shift functions, The varia-
tion of the Lagrange multipliers leads to the super-
Hamiltonian and supermomentum constraints which
limit the choice of the canonical field variables. The
Poisson brackets between the constraint functions
have the same universal structure.?® The supermo-
menta are always linear functions of the field
momenta,

Inspecting the super-Hamiltonians, however, we
come across the first fundamental difference between
the two theories. The geometrodynamical super-
Hamiltonian is a quadratic function of the field mo-
menta, characterized by a hyperbolic “supermet-
ric.”® The super-Hamiltonians of standard tensor
fields propagating on a given background are quad-
ratic in the field momenta, but linear in the “kine-
matical” momenta canonically conjugate to the em-
bedding variables. These super-Hamiltonians thus
have a “parabolic” character. ®

Viewing the super-Hamiltonian as the starting
point of canonical quantization, one is led to a
Schrédinger equation for the field propagating on a
given background, but to a Klein—~Gordon egquation
for quantum geometrodynamics. The latter situation
is never encountered in the conventional Lorentz
invariant quantum field theory; the single particle
may obey the Klein—Gordon equation, but the evolu-
tion equation for the quantized field is always of the
Schrodinger type. The Klein—Gordon field equation in

2 partially supported by NSF Grant No, MPS-74-16311 to the
University of Utah.,
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quantum geometrodynamics leaves us with unsettling
unresolved problems touching the very interpretation
of the formalism,

Two general proposals have been made how to lin-
earize the geometrodynamical super-Hamiltonian in
at least some of the field momenta. From the ADM
perturbation analysis7 it is apparent that the direct
information about time is carried by the geometro-
dynamical momentum, rather than by the hypersur-
face geometry in the role of the configuration co-
ordinate., The author suggested® that the geometro-
dynamical super-Hamiltonian is to be cast from the
hyperbolic to a parabolic form by a canonical trang-
formation before the fields are quantized. The tran-
sition to such an “extrinsic time representation”
was accomplished for specific minisuperspace mod-
els.? York!® has developed a beautiful general
scheme defining the extringic time and the conjugate
energy density and casting the super-Hamiltonian
into a parabolic form, the energy density entering
linearly into the new super-Hamiltonian, A possible
use of York’s scheme in canonical quantization has
been explored by Teitelboim,!! The principal diffi-
culty to be overcome is the implicit and highly non-
local structure of the new super-Hamiltonian, which
makes it extremely difficult to decide on a proper
factor ordering.

The second proposal attempts to linearize the
quadratic gravitational super-Hamiltonian similarly
as the Dirac equation linearizes the ordinary Klein—
Gordon equation. 12 The resulting scheme is equiva-
lent to super-gravity, 13 The price to pay for the lin-
earization is thus a supplementary $-spin field
coupled to geometry.

In this paper, we want to discuss much simpler
aspects of the linearization problem. We shall con-
struct three elementary models in which a hyperbolic
super-Hamiltonian constraint is cast into an equiva-
lent parabolic (or linear) form by a suitable canonical
transformation. In our models, both the old and the
new constraints are local in the respective field
variables, and no supplementary spinor fields are
necessary. The canonical transformations used are
in one case a linear transformation of the canonical

© 1978 American Institute of Physics 390



variables, in another case a transformation in the
configuration space of the system complemented by
adding a gradient to the field momentum. These are
transformations which, unlike the general canonical
transformation, are expected to preserve the quan-
tization scheme,

Neither of the models yields easily to a generali~
zation, We do not propose them as solutions to
present difficulties, but rather as idealized models
(similar to soluble models of ordinary quantum
field theory) on which there is a hope of exhibiting
explicitly the relationship between the Klein—Gordon
and the Sehrddinger field quantizations. Even so,
the rigorous comparison of these two schemes does
not seem feasible at the present moment, due to the
unresolved difficulties how to define the densities,
rather than the integrated constraints, as meaningful
operators,

The first of our models shows how to reinterpret
the massless real scalar field propagating on a
(1+1)-dimensional flat Minkowskian background as
a collection of three massless scalar fields, two
with a positive, and the third with a negative energy
densities, combined into a hyperbolic super-Hamil-
tonian. It also shows that the massive real scalar
field leads to a model mimicking the supermetric
of a curved superspace,

The second model shows that the linear (kinemati~
cal) part of the super-Hamiltonian constraint of a
parametrized field theory on a flat Minkowskian
background in 1+# dimensions can always be cast
into an equivalent quadratic form, This model is in-
teresting because it provides an example of the
theory in which the Lagrange multipliers are only
weakly equal to the lapse and shift functions, and
the Poisson brackets between the super-Hamiltonians
consequently lead to quadratic, rather than linear
combinations of the constraint functions,

The third model analyzes the way in which the
hyperbolic yeometrodynamical super-Hamiltonian in
1+ 2 dimensions, necessarily generating the flat
spacetime by the evolution of the 2-geometry, is
equivalent to the linear kinematical hypersurface
super-Hamiltonian, generating the same flat space-
time by the deformation of an initial embedding.

2. LINEAR, PARABOLIC AND HYPERBOLIC
SUPER-HAMILTONIANS

To illustrate the three typical patterns in which
the super-Hamiltonians depend on the canonical
momenta, we briefly summarize the schemes of
hypersurface kinematics,? of a parametrized field
theory on a given Riemannian background,? and of
geometrodynamics with tensor sources, ?

A. Hypersurface kinematics

The position of a hypersurface in a given Rie-
mannian spacetime (/}j ,g) can be specified by the
embedding
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eem—M, xem—Xxec/l.

In terms of the local coordinates x¢ in the space m
and the local coordinates X® in the spacetime /},
the mapping e is described by the functions

X%= e%(x%),

The Latin indices range from 1 to n, the Greek in-
dices from 0 to n,

(2.1)

Differentiating Eq, (2,1) with respect to x2, we
get the tangent vectors e =e% ;. The unit normal to
the (spacelike) hypersurface is then determined by
the conditions

(2.2)

The Greek indices are raised and lowered by the
spacetime metric tensor, the Latin indices by the
space metric tensor

naed=0, g*®lelnng=-1,

gplel=gygleleles. (2.3)
A continuous deformation of the hypersurface
through the spacetime is represented by a one-
parameter family of hypersurfaces, i.e., by a
curve e(t) in the space of embeddings,
X%=e%(x" 1), (2.4

The tangent vector to this curve at the embedding
e(t),
o °
N f) = ae_a(txi,ﬁ = e (2.5)
is called the deformation vector, Its components

along the hypersurface and normal to it are the shift
and the lapse functions,

N%=Nagl+ Nn®,
(2. 6)

Ne=N%e%, N=-—N,.

The kinematical process of deforming the hyper-
surface through a given Riemannian spacetime can
be described in the canonical language. Start from
the action functional

Sle®,po; N1= [ dt | dme(poe®~Nap,) (2.7)

depending on the embedding variables e®*(x9) , their
conjugate momenta p,(x%), and the Langrange multi-
pliers N*(x%). Its variation with respect to p, re-
produces Eq. (2.5), informing us that the Lagrange
multipliers N® are to be interpreted as components

_ of the deformation vector. Varying the action with

respect to N%, we learn that the momenta p, are
constrained to vanish,

Pe=0, (2,8

so that no physical or geometrical significance can
be assigned to them. Finally, varying the action
(2, 7) with respect to the embedding variables, we
see that the constraints (2. 8) are preserved along
the embedding curve e(f),

by=0. (2.9

The deformation vector N® in the action (2.7) can
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be decomposed into the lapse and shift components
according to Eq, (2. 6) and the action cast into the
form

Sle* »DPas N:Na]

=/ dtf dh(pae®~NH=NoH), (2.10)

with the super-Hamiltonian H and supermomentum H,
given as functionals of ¢% and p,,,

Hle® p l=n%elp,=-p,, (2.11)

H,le®,p,1=e%p,=p,. (2.12)

The normal n® is determined as a functional of the
embedding by Eqs. (2.2). The super-Hamiltonian
(2.11) is a linear function of the momenta p,, re-
flecting an essentially trivial character of these
variables,

The Poisson brackets among the constraint func-
tions (2. 11) and (2, 12) close in the standard way?,

(H(x),H(x")]

=g®(x)H, (%) 6 (x,x") = (x 1), (2.13)
[H,(x) ,H(x) ] =H(x)8 ,(c,x), (2,14)
[H, (), Hy(x")]

= Hylx)5, ,(x ,x") = (ax ~—bx") (2.15)

ensuring the preservation of the H=0=H, con-
straints. The metric g® in Eq, (2.13) is considered
as a functional of the embedding, Eq. (2.3).

All this shows that the hypersurface kinematics
can be reproduced as a degenerate Hamiltonian dy-
namics of the e®, p  variables.

B. Parametrized field theory on a given Riemannian
background

The hypersurface kinematics acquires a physical
meaning when we follow the dynamics of a physical
field along the embedding curve. We abstain from
discussing the general formalism! and illustrate
the situation by the simplest example of a field with
nonderivative gravitational coupling: a real scalar
field obeying the linear wave equation

O¢ - pP¢ =0,

The momentum ,(x) [e] conjugate to the field ¢(x)le]
= ¢(e(x)) on the hypersurface e(x) is given in this
case by the normal change of the field itself,

(2.16)

1,0 el =g/ 2x} [e] n(x) [e] ¢ 4(e)
=gt %$ - Mg ), (2.17)

and the dynamical evolution of the field is generated
by the field super-Hamiltonian H® and supermomen-
tum H®, 14

HO = kg /2 24 foV/2(gavgy ¢ 4 ulg?), (2.18)
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H® =7y ,. (2.19)

The field super-Hamiltonian is quadratic (and posi~
tive definite) in the momentum r,. The evolution of
the field is described by the action functional

Sle®*, ¢ ,py,mps NN

= [dt | d%(poe®+1yd —NH — NeH) (2. 20)

with the super-Hamiltonian and supermomentum ob-
tained by adding the field expressions (2.18), (2.19)
to those describing the field kinematics, Eqs. (2.11),
(2.12) ;

H[ea,pa!¢yﬁa]:_pL+H¢’ (2.21)

H(le*,p,,0,14l=p,+ H®,. (2. 22)

The metric g, and its determinant g in the field
super-Hamiltonian (2, 18) are considered as function-
als of the embedding through Eq, (2.3). The kine-
matical momenta p , enter the super-Hamiltonian
(2.21) linearly, while the field momentum =, occurs
there quadratically, so that H has a “parabolic”
structure in the momentum variables {p,,,}.

The variation of the action (2. 20) in the field vari-
ables ¢, 1, yields the field equations equivalent to
Eq. (2.16), By varying the kinematical momenta p,,,
we learn that the Lagrange multipliers N, N@ are
identical with the lapse and shift functions,

e%=Nn® + Nee®, (2.23)

The variation of the multipliers leads to the con-
straints H=0=H, which endow the projections of the
kinematical momentum with the physical meaning;
using Eqs. (2.21), (2.22), we see that p, is equal to
the energy density H® and ~p, to the momentum den-
sity H®, of the scalar field. The variation of ¢* gives
then the laws of conservation of energy and
momentum,

The constraint functions (2.21), (2, 22) satisfy the
same Poisson bracket relations (2.13)—(2.15) as the
kinematical constraint function (2.11)—(2.12),3

C. Geometrodynamics

The dynamics of the gravitational field in vacuum
is described by the action functional’?2

Sanb!ﬂab;NyNa]

= [dt | d"(ng,,— NH - NeH,).

The momentum 7% canonically conjugate to the hy-
persurface metric g,, is related to the extrinsic
curvature K, by the formula

(2. 24)

n® = g1/ K gb — K1Y, (2. 25)
The gravitational super-Hamiltonian
1
_g1/2 2 1/9 .
Hlgyp, =87/ (wabn“”—,,_lfr) -g'/'R (2. 26)

is a quadratic function of the gravitational momenta
7, The coefficient (n — 1)~ of 7% depends on the di-
mension n of the space m, 1% The signature of the
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quadratic form (2, 26) of the momenta is
(~y+,e..,+) 18 which shows the hyperbolic char-
acter of the super-Hamiltonian., The gravitational
supermomentum

HaLf,’od,‘fTCdlz -211'2”,

is linear in the momentum 72%; the vertical stroke
denotes the covariant derivative generated by the
hypersurface metric g,,,.

(2.27)

The hyperbolic character of the super-Hamiltonian
remains unchanged when we couple the gravitational
field to a source. For a nonderivative coupling, this
is achieved by adjoining the field super-Hamiltonian
and supermomentum, like (2, 18), (2.19), to the
gravitational super-Hamiltonian (2, 26) and super-
momentum (2, 27). For the scalar field, this adds
just another square, 3g'/2r2, to the gravitational
form, adding an extra + to the signature of the ex-
tended supermetric,

The gravitational constraint functions (2. 26),
(2. 27) again satisfy the universal Poisson bracket
relations (2.13)—(2.15).°

We have thus exhibited the three different types of
super-Hamiltonians we mentioned in the Introduction:
the linear super-Hamiltonian of hypersurface kine-
matics, the parabolic super-Hamiltonian of a para-
metrized field theory on a given Riemannian back-
ground, and the hyperbolic super-Hamiltonian of
geometrodynamics, with our without sources. In the
following sections, we shall try to reconcile these
three types of super-Hamiltonian by transforming
them into each other for simple intuitive models,

3. REAL SCALAR FIELD ON A FLAT BACKGROUND
IN 1+ 1 DIMENSIONS

As our first example of equivalence of the parabolic
and hyperbolic constraints, take a real scalar field
propagating on a flat (1+1)-dimensional Minkowskian
background. If the privileged Minkowskian coordi-
nates 7, X are chosen to label the spacetime points,
the embedding functions assume the form

e%(x) ={T(x) , X ("}, (3.1)

x is an arbitrary curvilinear coordinate labeling the
points of the one-dimensional hypersurface. The
partial derivative with respect to x will be denoted
by prime. There is only one vector tangent to the
slice (3.1),

ef={T", X'},

and the unit, future-pointing normal to this hyper-
surface is

ny=(X"2=T'H1/2_x T},

If we parametrize the hypersurface by the privileged
Minkowskian coordinate X, X=x, the term (X'?

— T"%-1/2 pecomes the Lorentz contraction factor for
an observer moving perpendicular to the hypersur-
face with the 4-velocity n® and the velocity d7/dX.
The same combination of terms occurs in the hyper-
surface metric tensor

(3.2

(3.3)
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g1 =MNegefet=X"t=T"? (3.4)
and in the volume density

git=xt- Tyl (3. 5)
Let

bo=Tbr,0x} (3.6)

be the momenta conjugate to the embedding variables
(3.1). The constraint functions (2, 21) and (2. 22) then
assume the form!’

H=(X"*~ T X pr+ T'py

+ 3y 2+ 30" P+ X = T Y 07, 3.7

Hi=T pp+ X'py+¢" 14 (3.8)

The supermomentum (3. 8) has the structure appro-
priate for the collection of three space scalars,
T, X, and ¢,

The first glance at the super-Hamiltonian (3. 7)
shows that it is advantageous to rescale it by the
factor (3, 5),

H=g'"H=X"pp+ T px

+imal 4 b i p(X - T Y02, (3.9)

If we want to preserve the form of the action (2, 20),
we must rescale the lapse function inversely to the

super~-Hamiltonian,
N=g1/?N, (3.10)

The new action, Sle* ,pa,cb,rr@,ﬁ,Na], leads to an
equivalent system of field equations,

The rescaling has an interesting effect on the
Poisson brackets (2,13)—(2.15). Equation (2,14),
expressing the fact that H is a scalar density of
weight 1,18 gets naturally replaced by the equation

[H, (), Hx") = 2H(0)6, (e ,x') + H, ()5 (x 1) (3.11)

expressing the fact that H is a scalar density of
weight 2. Equation (2, 15) remains unaffected by the
scaling, because it involves only the supermomenta,
The real surprise awaits us, however, when we
evaluate the Poisson bracket between the rescaled
super-Hamiltonians,

H) ,Hi) = (g 20 Hx) g1 2V H ')
=g/ 0)g 2 (") [H(x) ,H(x')]
- (x ~—x")
+ g 2(x) , Hx")] g1/ 2x" Y H (%)
- (x=—x"),

which we are now going to do,

The last term vanishes after the interchange
(v +—x') because it is proportional to the & function,

gV %)  H(x") ] = = g1/ 20 K(x) 5 (x, ') .
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The first term can be simplified by using Eq, (2.13)
and the identity

fx)gx)o, ,tx,x")

=fx)g ()5, (,x") +f(x)g, (x5 (x ,x"). (3.12)
Therefore,
(Hv) ,Hx")

=g(x)g®(x) H,(x)5 (x ,x") = (x —x'), (3.13)

In a (1+1)-dimensional spacetime, gg!'=1, and
Eq, (3.13) simplifies to

(H (x) ,ﬁ(x')]=H16'(x,x') —(x=x"),

where 5" {x,x’) is the & function differentiated with
respect to its first argument,

(3.14)

Note that the metric tensor disappears from Eq,
(3.14). This may have quite important consequences,
Indeed, the term g% on the right-hand side of the
Poisson bracket relation (2, 13) causes a number of
related difficulties. Being a functional of the canoni-
cal coordinates e or, in geometrodynamics, of the
canonical coordinates g,,, it precludes the constraint
functions H,(x), H(x) to generate (an infinitely di-
mensional) Lie group, %29 In quantization, it is a
source of yet unsurpassed factor ordering difficul-
ties.?! It is thus comforting to see the e-dependent
terms disappear from the Poisson bracket (3. 14)
between the rescaled super-Hamiltonians. Let us
emphasize that the proof of Eq. (3, 14) is quite in-
dependent of our restriction to the scalar field ¢
and is thus applicable to an arbitrary parametrized
field theory on a flat or curved (1+1)-dimensional
Riemannian background. Unfortunately, the proof
cannot be carried over to (1+1)-dimensional
geometrodynamics, which is not a well-defined
theory [the geometrodynamical super-Hamiltonian
(2. 26) makes no sense for n=1; see also the remarks
at the beginning of Sec, 5], Let us note in this con-
text that Schwinger?? tried to scale H into a weight
4 density in order to circumvent the factor ordering
difficulties in (1+ 3)~dimensional geometrodynamics.
In any case, the absence of the canonical coordinates
e from the Poisson bracket relations (2.15), (3.11),
(3.14) of an arbitrary parametrized field theory on
a (1+1)-dimensional background deserves a careful
exploration.

Having settled the question of the Poisson brackets,
we return to the specific structure (3.8), (3,9) of
the constraint functions, We see that both the super-
Hamiltonian (3. 9) and the supermomentum (3. 8) are
bilinear forms of the derivatives {7, X'} of the em~
bedding coordinates and the conjugate kinematical
momenta {py,py}. We shall study the transformation

TvX;pT’pXi_»ganiﬂ'EﬂTn {(3.15)
given by the equations
=2V T +py), 0 =2VUpy-T),
(3.16)

m=2Y2 (X' +pp), my=2 VX —pg),
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which have the inverse

X =2V ¥my+n,), T=212 -7,
e (3.17)
px=21E 40"y, pr=2n, -,
This transformation has a number of important
properties:

1, It is canonical transformation: This is easily
checked by exhibiting its generating functional

F[X’f)T; E 177]
== 22 (X 4 pp)E + (X = ppIm). (3.18)
The resulting equations
pe-CE g SE L __OF __oF
X7 5Xx°? EY Te= 5t ° Mo~ — &n
(3.19)

coincide with the appropriate selection of Eqgs. (3.16),
(3.17),

2. The transformation is nonlocal , but linear; The
linearity of the transformation is obvious. The non-
locality is equally obvious. For example, to get ¢
and n, we should integrate py with respect to x, i,e.,
along the hypersurface. The canonical transforma-
tion (3.16) thus has the same general character as
the canonical transformation from the local field
coordinates and momenta to the normal coordinates
and momenta, which is a standard tool of the quantum
theory of free fields,

3. It casts the kinematical part of H into a differ-
ence of squares:

X'pp+Tpx=slni—md+ 3¢ =n"). (3. 20)
4, It leaves the kinematical pavt of H, unchanged:
(3.21)

5, The metric gy becomes dependent on the new
momenta, but it vemains a quadvatic form of the
canonical variables

gy=X"1=T' = 3(ry+7,) % — 3¢" —n")%, (3.22)

Let us remark that the transformation (3,16) is not
the only one having the enumerated properties. E.g.,
the transformation

g =2VUX 4 pp),

Xpx+T'pr=t"me+ 1 e

77' - 2-1/2(T' _pX) ,
(3.23)

7T5=2-1/2(T' +Px), 7Tn=2‘1/2(7TT—X’)

has the same desirable features. Equations (3. 20)
and (3, 21) hold unchanged, while Eq. (3.22) gets
replaced by

21175 — 1)t = S+ 1) (3. 24)
Let us first observe the effect of the canonical

transformation (3, 16) or (3, 23) on the massless

scalar field. Due to Egs. (3.20), (3.21) we get

He=Haen) + dr 42 )+ dag+ 9D, (3.29)
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(3. 26)

The super-Hamiltonian (3. 25) and supermomentum
(3. 26) describe the collection of three noninteracting
scalar fields, ¢, £, and 1, each of which satisfies
the wave equation, The ¢ and ¢ fields have the posi-
tive energy density, the n field has the negative en-
ergy density. Otherwise, all these fields enter the
constraint functions in an entirely symmetrical
fashion., There is no way to recognize from the form
of the constraints (3, 25), (3.26) that ¢ is a dynamical
field, while ¢ is a combination of kinematical vari-
ables; Egs. (3.25), (3,26) are invariant with respect
to the interchange

£, 10, Tq. (3.27)

The parabolic super-Hamiltonian (3, 9) was cast by
the canonical transformation into the hyperbolic
form (3.25), The contravariant supermetric GAB in
the space of the canonical momenta

H= n'1r,7+g'1r€+ (I)"rra,.

4 ={rgame ol (3.28)
has the diagonal form
GAB=Ldiag{-1,1,1}, (3.29)

so that the superspace corresponding to the param-
eterized massless scalar field is flat,

Though the kinematical variable £ cannot be rec-
ognized from the dynamical variable ¢ by inspecting
the form of the constraint functions, there are in-
equalities limiting the range of the kinematical
variables which remind us of the distinction between
¢ and ¢. These inequalities arise from the condition
that the hypersurfaces must be spacelike,

gu=Xt=T't>0, (3. 30)

In terms of the new canonical variables, Eq, (3, 30)
becomes

|7r£+7r,,‘>|g'—n' . (3.31)
We see that Eq. (3.31) mentions ¢ and r,, but not
¢ and T

The distinction between the kinematical and the
dynamical variables becomes obvious even at the
level of the super-Hamiltonian if we pass to the
massive scalar field, Taking into account Eq, (3.22),
we see that the canonical transformation (3, 16) casts
the parabolic super-Hamiltonian (3, 9) into the
hyperbolic form

H=~ 301 = g2 my? + 120 2mpmy+ 31+ 020D me + b,

~ 3 5 50" = dnle e —n')2 (3.32)
Here, the kinematical and the dynamical variables
are no longer on an equal footing, ¢ having clearly

a distinguished position. The ¢, 75 fields are coupled
to the ¢ field by the last (potential) term in Eq.
(3.32), Moreover, the supermetric in the space

(3. 28) becomes dependent on the canonical coordinate

¢,
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~(1=p¢?Y, p2e?, 0
GAB=3 plo ,  (1+pfed, 0 (3.33)
0 ) 0 s 1

The Ricci tensor of the three-dimensional space
{n,&,¢} with the contravariant metric (3, 33) is

1, =1, o0
Ryp=p?ll =1, 1, 0} - (3.34)
0 0, 0

9 3

The superspace {n(x),z(x), d(x)} is thus obviously
curved., This is surprising in face of the fact that the
¢ field obeys a linear equation in the original flat
spacetime,

The super-Hamiltonian (3. 32) is again hyperbolic,
the metrie (3. 33) having the signature (~ ,+,+) for
an arbitrary ¢ Inote that the determinant of (3. 33) is
always equal to - 1],

The quantum field theory of a scalar field in flat
spacetime is, of course, the simplest of the soluble
theories. This makes the foregoing model, with all
of its artifically introduced similarities to curved
superspace, so attractive, One can hope to clarify
the connection between the Schriodinger and Klein—
Gordon quantizations along its simple outlines.

On the other hand, one should realize the limited
applicability of the canonical transformations studied
in this section. No immediate generalization offers
itself to higher dimensional spacetimes (»=2,3),
Even in a (1+1)-dimensional spacetime, the trans-
formation looses its usefulness for other fields then
the real and complex scalar fields. So, e.g., for the
electromagnetic field in 1+ 1 dimensions, gy; enters
also into the electrig energy part of the rescaled
super-Hamiltonian H, making it of the fourth order
in the new momenta, The ideas expressed here—the
rescaling followed by a linear canonical transforma-
tion mixing the canonical coordinates with their
conjugate momenta—thus work only in very special
situations., The cylindrical gravitational waves are
another simple model in which they find their
application. ?

4. HYPERSURFACE KINEMATICS GENERATED BY
A HYPERBOLIC SUPER-HAMILTONIAN

The canonical transformation considered in the
last section affected only the kinematical variables
T, X, pp, px. Its usefulness lies in its power to
leave the kinematical supermomentum linear in the
momenta, Eq. (3. 21), while casting the linear
kinematical super-Hamiltonian into a hyperbolic
form, Eq. (3.20). The hypersurface kinematics in
1+1 dimensions can be then generated by this hyper-
bolic super-Hamiltonian

Because the metric gy enters the scalar super-
Hamiltonian in a very special way, the rescaled
field super-Hamiltonian is also quadratic in the mo-
menta and the scalar field dynamics is again gen-
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erated by a hyperbolic super-Hamiltonian, composed
from the kinematical and the field parts. However,
this property of the scalar field is rather fortuitous
and the trick does not necessarily work for other
fields. The only general theorem we have concerns
the “hyperbolization” of hypersurface kinematics
ina 1+1 dimensional flat spacetime,

We now explore a different method which allows us
to generate the hypersurface kinematics in an arbi-
trarily dimensional flat spacetime by a hyperbolic
super-Hamiltonian, First, we write down the equa-
tion governing the change of the embedding ¢* along
the embedding curve e(t),

°e°‘=Nn°‘+N"e:. (4.1)

Of course, this is nothing else but the lapse~shift
decomposition (2.6), We notice that ¢* changes under
the normal deformation (N = 0,N¢=0) of the hyper-
surface by Nn®, so that n% is the normal velocity
corresponding to the canonical coordinate e®. In
Sec. 2, we have seen that the density form of the
normal velocity of the scalar field ¢ played the role
of the momentum 7, canonically conjugate to ¢, It
is thus natural to ask whether one can build the
Hamiltonian formalism in which g'/%, would be the
momentum canonically conjugate to the embedding
variable e%,

Put therefore

Ty =8, (4.2)
and study its change along the embedding curve.
Because

&Y/1=—NK+ (!N, (4.3)
we get

To=—NKg/ %, +g" %N +(x, N9 ,, (4.4)
by differentiating the definition (2.3) of n,. Can one

find the Hamiltonian generating Eqs. (4.1), (4.4)
as the canonical equations of motion?

For the shift part of Egs, (4.1), (4,4) this is
trivially accomplished by our old supermomentum
(2.12), H, =elr,, contributing to the Hamiltonian
by the term [d"xN°(x)H,(x). Next, we find the poten-
tial Vel yielding the lapse terms in Ed. (4.4).
Indeed,

Viel= | dm’gt/%x") [eIN(x") (4.5)
is such a potential, Because

og'/ el =g %% 502, 4.6)
we get

- 5ZZ£§;=‘fd"x'gi“(x’)e‘;N(x’)Gm:(x' ,X)

m

= (gi/Ze%lM'a:gl/Ze%‘N,a_l_ (gi/ze%l)laN'

The Gauss—Weingaarten equation
e‘tlxlbz_K% Ny (4.7
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introduces the extrinsic curvature into the last
term, and our expectation is fulfilled:

5Viel

—NKg'/*ng+g"/ %N, == =3

. (4.8)

Next, we write down the kinetic term
Tle,r1 =14/, dNg™/ 2leln®r 4.9

which generates the lapse term in Eq. (4. 1) by virtue
of Eq, (4.2)
6T

Ngl/2p® = Np¥= 2=

. 4.1
Omy ( o)

This leads us to the lapse part Tle,n!+ Vel of the
Hamiltonian. Unfortunately, the argument is spoiled
by the presence of e in the kinetic term Tle,rl,
which must be varied as well and which contributes
to Eq. (4,4) by an unwanted term. The appearances
are saved by recalling that we are building the for-
malism with the super-Hamiltonian constraint, All
objectives are achieved by taking the lapse part of
the Hamiltonian in the form Tle,rl+3Vliel, i.e.,
starting from the action

Sle® rq N, Nel = | dx(roo® — NH = NeH) , (4.11)
with the super-Hamiltonian

H= gt/ 2eln®r mg+ 3t/ 2e], (4.12)
and the supermomentum

H =elr,. (4.13)

Indeed, the action (4,11)-(4,13) leads to the
correct equations (4,1), (4.2), (4.4) for the em~-
bedding variables e* and the conjugate momenta
1o =8"%n,. Varying it with respect to r,, we get

&%= Nee® + Ng=1/2p, (4.14)

Next, the variation of the shift gives the supermo-
mentum constraint

H,=elr,=0, (4.15)
which implies that the momentum 7, must be
parallel to the normal,

To=TNge (4,16)

The variation of the lapse leads to the super-Hamil-
tonian constraint,

H=3(g"V 1By ma+ g1/ =0, (4.17)

which fixes the proportionality factor 7 to +g!/2. The
solution for the momentum w, is thus double-valued,

re=+8"%,, (4.18)

Substituting (4. 18) back into Eq. (4.14), we learn
that N is (up to a possible sign) the lapse function,
and Ne is the shift vector.

It is significant that N could be identified with the
lapse function only modulo the constraints, i.e.,
weakly. As a consequence, the super-Hamiltonian
also does not satisfy Eq. (2.13) strongly, but only
weakly. Let us calculate
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(Hx) ,H(x')]
=&l 2By  malx) gt M Pm e (") ]

+{i’[g“”217°‘5‘7ra7rs(x) &Y Ux") = (x —x")}

directly. Using Eq, (4.6), we get the necessary
variational derivatives

1/2

o =8 e )6 4, ),

(4.19)

6g-l/Z(x) B

se%(x’)

while the identity (3. 12) again polishes the final
result,

(Hx),H(x")]

- gV Ux)es(x)5 ,(x,x"),

=(1 =g/ 2)H(x))Ha(x) 5, (x ,x) = (x ~—=x").
(4, 20)

We have thus arrived at an interesting example of
generalized Hamiltonian theory in which the con-
straint functions close under the Poisson bracket
operation not into a linear, but into a quadratic com-
bination of the original constraint functions,

The action (4,11) with the hyperbolic super-Ham-
iltonian (4, 12) is the “squared form” of the action

Sle®, 1y,N*]

= [ @t [,y d™ (1,2% = No(ry, — g1/ %, [e]) (4.21)
leading to the field equations

&% =N, (4.22)

o= Bei(x_) / d' g/ 2 Y oo )N (") (4. 23)
and the constra’innt

Hy=r,—-g"%nlel=0. (4, 24)

Indeed, the variational derivative in Eq. (4, 23)
can be rearranged into

o)
=S gnt 17200 ’
[56'1(")./:" © g NG )] NGx?) tixed

o fagtin) S

The first term we have already evaluated, in Egs.
(4.5) and (4, 8). The second term is equal to

(g2 N ,, due to the formula

(?Snef(cx; == eg(x')na(x')é,,,.(x' ,X),

obtained by varying Eqgs. (2,2). Therefore,

2 f dn’ g1/ 2 ymglc') NB(x")
m
=~ NKg'/%,+g" %3N + gV 2 N9) (4.25)
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so that Eq, (4.23) coincides with our old equation
(4,4), The actions (4.11), (4,12), and (4. 21) both
lead to the same correct equations of motion.

We pass from the action (4, 21) to the action
(4.11)—(4. 13) in the following steps. We project the
constraint (4, 24) into the hypersurface and “square
it, ”

e?H,=el'r,=0,

H=g V¥ + g/ 0 (n, —g" %n,) (4. 26)

=g/ @By ot g/ 220,

The constraints (4. 26) are equivalent to the original
constraint (4, 24), up to the ambiguity in sign intro-
duced by the squaring operation, If we adjoin the new
constraints (4. 26) to the action by means of the new
multipliers N and N, we arrive at the action (4, 11),
(4.12).

The last point which remains to be clarified is the
connection between the linear action (4.21) and the
standard linear action (2,7). Let us use the Greek
epsilon to denote the embedding variable conjugate
to the 7y, Our aim is to show that the transition

from (2,7) to (4. 21),
eazea’ pa=77a_g1/2na’ 4.2m)

is a canonical transformation. Indeed, Eq. (4. 27)
follows from the generating functional

Fle*,p,1= —fm A% (pac®+n+1)"1g1 e ln, lele®)

(4, 28)
by variational differentiation
SF SF
°‘=—gl;:, Ta==5ca - (4, 29)

The last variational derivative is evaluated with
the help of Eq. (4. 25) (for N¥=¢5) and the relations

_ a ==
na.b'_'—Kabeav €aalb™ Kabna'

The term g'/ %, in Eq. (4,27 is thus shown to be
the functional gradient of an integral given by the
last term in Eq, (4.28).

We conclude that the hyperbolic super-Hamiltonian
(4.12) follows from the standard linear super-Ham-
iltonian (2.11) by the canonical transformation (4, 27)
followed by the squaring operation (4.26). Either
one of these super-Hamiltonians correctly generates
the kinematics of hypersurface in a (1+#»)-dimension~
al Minkowskian spacetime.

5.1+ 2 DIMENSIONAL GEOMETRODYNAMICS

The metric field in 1+ 3 dimensions possesses
2 «3 dynamical degrees of freedom. While other
fields (scalar, electromagnetic) remain dynamic in
a (1+2)- or (1+1)-dimensional spacetimes, the met-
ric field is an exception. The Einstein law of gravita-
tion cannot be written down in 1+ 1 dimensions, be-
cause the Einstein tensor identically vanishes
(another way of seeing this is to realize that the Hil-
bert action in two dimensions becomes a topological
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invariant due to the Gauss—Bonnet theorem). Corre-
spondingly, the super-Hamiltonian ceases to be
well-defined for n=1,

In 1+2 dimensions, the Einstein law makes sense,
However, the vanishing of the Einstein tensor in the
vacuum is equivalent to the vanishing of the full
Riemann tensor, The matter thus curves spacetime
only locally and the spacetime outside bodies is
necessarily flat, The gravitational field in 1+2
dimensions has no true dynamical degrees of
freedom,

Still, we can generate the flat spacetime by the
evolution of the 2-geometry £,,(x){e]l through the ac-
tion functional (2. 24) with the supermomentum (2.27)
and the hyperbolic super~Hamiltonian (2. 26),

Hanb,,’rab] :g—1/2(7TabTrab _ 7'(2) —g”zR.

The guantization of this model was attempted by
Leutwyler. 2

(5.1)

On the other hand, we know that the kinematics
of hypersurfaces in a flat spacetime is described by
the action (2.10) with the standard linear super-
Hamiltonian (2, 11) and supermomentum (2,12). The
geometry carried by the hypersurface e¢® can then be
defined by the equation

) le] =nggeel. (5.2

We know that the geometrodynamical scheme (2,24),
(2,27 and (5.1) and the hypersurface kinematics
scheme (2,10)—(2.12) and (5.2) must be equivalent
to each other, but we are confronted by the problem
how to spell out this equivalence in purely
Hamiltonian terms.

The obvious idea is to complete Eq, (5,2) into a
canonical transformation

ea’ptx T &ab ’pab.

For n=2, the number of variables is just right: each
of the spacetime quantities e%*, p, has three compo-
nents, and each of the symmetric space tensors
&,5-P%° also has three independent components, Our
first attempt to produce the geometrodynamical mo-
mentum (2.25) is, however, doomed to failure; we
have thus denoted the momentum arrived at by the
canonical transformation (5, 3) by another symbol,
namely, pb.

(5.3)

The natural generating functional of Eq, (5.2) is

Fle® pav] :fmd2x 1 a2 %e8 P (5.4)
indeed,

B ™ 5%1%
yields Eq. (5.2), while

o= %: —2(p%e,44) p (5.9)

specifies the transformation of the momenta.

As usual, Eq. (5.5) is resolved neither with re-
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spect to the old nor the new momenta, Bypassing this
problem, let us rather see what combinations of the
new momenta we must know when calculating the
quantities of interest, namely, the constraint
functions,

Because the expression p“”eaa is a space vector
density, we can replace the partial derivative ,b in
Eq. (5.5) by the covariant derivative |b, Using
the Gauss—Weingaarten equation (4, 7), we get

D™= 250 2K

The projections of p, onto the surface and perpendic-
ular to it yield the supermomentum (2.12} and the
super-Hamiltonian (2,11),

— _ b
Ha_e:tpa_—zpalb’

(5.6)

(5.7)

H=n%,=— 2K_pab, {5, 8)

In supermomentum, the resolution problem is com-
pletely solved, because the final expression in (5, 7)
is given entirely in terms of the new variables, g,,

and p®®, The extrinsic curvature in the super-Ham-
iltonian, however, is determined from the Gauss—

Weingaarten equation,

K lel=nleleds, (5.9)

and as such it is still a functional of the embedding
rather than of the 2-geometry g,,.

To obtain K, as a functional of geometry, it is best
to proceed in an indirect way. We know that the
spacetime is flat and that its flatness in 1+ 2 dimen-
sions is equivalent to the vanishing of the Einstein
tensor G,g We also know®! that the L L and la pro-
jections of this tensor contain only the metric and the
extrinsic curvature,

—2G,, = = 2n%G (gnP= (K ,K® —K*~R) =0, (5.10)

o= = €3 Gasn®= (K2~ K =0, (5.11

while the ab projection contains also the normal
change of the extrinsic curvature and is thus irrele-
vant for our purposes, Equations (5.1) and {5.11)
could have been obtained, of course, also directly
by manipulating Eq. (5. 9).

An important fact is that the three equations

(5.10) and (5, 11) are just sufficient (with appropriate
boundary conditions) to determine the three compo-
nents of K, as functionals of the metric. An equally
important fact is that we cannot write down an ex-
plicit form of this functional, because only Eq. (5.1)
is algebraic, the second equation, Eq. (5.11), being
a differential equation, The best we can do in this
situation is to formulate our action principle as a
variational principle with supplementary conditions:

The actual field extremizes the action

SLgab 7pab ’Kab ’N’Na]

= fdtjm % (pobg,, —NH — NeH ) , (5.12)
H=_2Kabpab, Haz-—nglb, (5.13)
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for all variations of the variables g, p?°, K,;, N,
N satisfying the supplementary algebraic-differential
conditions (5.10) and (5.11).

This is a far cry from the geometrodynamical
action principle (2.24), (2.27), and (5.1) which,
first, is a free variational principle, and second,
contains the super-Hamiltonian (5. 1) quadratic in
the momentum 7#°, while the super-Hamiltonian
(5.13) is still linear in the momentum po,

To resolve this discrepancy, we start from a
slightly different canonical transformation than that
produced by the generating functional (5.4). We put

F[eu‘,ﬂ”b]=f d¥ (nygelefra® - 2g1/elKle)) ,
" (5.14)

with the extrinsic curvature again given by Eq.
(5.9). The additional term does not affect the metric
(5.2), but it modifies the kinematical momentum,

- OF

se® =- 2(7rabeaot)lb

Ta

_2-2 f d% g/ elKle], (5.15)

se®
The last term is most easily evaluated from the pro-
jection formula for the spacetime curvature scalar,®

Ngl/? 3R = — 2(g'/?K)" + Ng'/ (K , K®* — K% + R]

+ 2(g 2K NT) |+ 2(g 1/ 28N ) . (5.16)

In flat spacetime, the left-hand side of Eq. (5. 16)
vanishes. The last two terms on the right-hand side
of Eq. (5,16) are boundary terms, and N=—n,e%,
Therefore,

o]
—2-——/d2xg1/2[e]K[e]
6e® -

=gl (K ,K® — KD + R}n®, (5.17)
The kinematical momentum (5.15) thus assumes the
form

= b
To == 277 16€a0

+{272%K p + gV UK K —~ KY) + g1/ 2R,
(50 18)

leading to the super-Hamiltonian

H=n%ry=—2K,,7 — g!/ 2K K0 - K% — gl /?R,
(5.19)

and supermomentum

H,=e%r,=~210),. (5. 20)

Superficially, nothing is gained by making the new
canonical transformation (5.2) and (5.18) instead of
the old one. The new super-Hamiltonian (5,19) cer-
tainly looks more complicated than the old super-
Hamiltonian (5. 8), and the old troubles remain un-
resolved: The variational principle is still condition-
al, subject to the supplementary conditions (5. 10)
and (5.11), and the new super-Hamiltonian (5, 19)

399 J. Math. Phys., Vol. 19, No. 2, February 1978

is still linear in the new momentum 7*°. However,
varying the new action

Slg,p, ™0 K 5, N, Na]

= [t [ db(xtg,, — NH ~ NHY) (5. 21)
freely, we discover that the supplementary con-
ditions (5.10) and (5, 11) automatically follow from
it. Indeed, due to the new structure of the super-
Hamiltonian (5, 19), the variation of K,, gives Eq.
(2.25). The variation of the N and N® gives the con-
straints H=0=H, which, upon the substitution (2, 25),
turn out to be identical with the supplementary con-
ditions (5,10) and (5.11),

This allows us to replace the conditional variation~
al principle by the free variational principle (5,19)—
(5. 21) and remove thus the first of our troubles. The
extrinsic curvature is to be varied freely; it enters
the action (5, 21) as another Lagrange multiplier,
through the super-Hamiltonian (5.19), The action
(5.21) is still linear in the momentum 7¢®. However,
by the well-known trick of the variational calculus,?"
any variational principle can be transformed into an
equivalent one by eliminating some of the variables:
We solve their Euler—Lagrange equations, express
the chosen variables in terms of the remaining ones,
and substitute these solutions into the original
action. In particular, the Euler— Lagrange equation
obtained from the action (5, 19)—(5, 21) by varying
K,,, namely, Eq. (2.25), can be solved for K in
terms of g,, and 7%°, When this solution is substituted
back into the action (5, 21), we recover the action
functional (2, 24) with the hyperbolic super-Hamil-
tonian (5.1).

The kinematical action (2,10) with the linear super-
Hamiltonian (2.11) is thus transformed into the
geometrodynamical action (2, 24) with the hyperbolic
super-Hamiltonian (5,1) by the canonical trans-
formation (5. 2) and (5, 18) with the generating func~
tional (5,14), followed by the conversion of the con-
ditional variational principle (5.10), (5.11), and
(5.19)—(5. 21) into the free variational principle
(5.19)—(5.21), and by the elimination of the Lagrange
multiplier K, from the action (5,21),
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Random linear systems and temporal homogeneity

David P. Vasholz

Naval Coastal Systems Laboratory, Panama City, Florida 32407
(Received 4 October 1976)

The class of random linear systems having stochastic Green’s functions whose moments are invariant under
arbitrary uniform translations of all time variables is defined and investigated. It is pointed out that this
class is very broad, including, for example, virtually all treatments of wave propagation through a random
medium. Proceeding by analogy with quantum field theory the quantities § and M, related to the first
and second moments of the stochastic Green’s function, are defined. Various properties of § and M
(which in quantum field theory correspond respectively to a propagator and an elastic scattering
amplitude) are discussed, and it is shown that they may be conveniently used to describe the principal
physical effects induced by transmission through a randomly fluctuating system. Specific examples are
given in which these quantities are explicitly calculated and used to illustrate the general results.

I. INTRODUCTION

There exists an extensive literature devoted to ran-
dom dynamical systems.! An important class of such
systems are what might be termed linear random sys-
tems, which we take to denote dynamical systems in
which the outputs are linearly related to the inputs via
a causal Green’s function G, where G itself is taken to
be a stochastic function, Thus the randomness is an in-
trinsic feature of the system, inducing random outputs
for any nonvanishing inputs, whether random or not,
Random linear systems and stochastic Green’s func-
tions have been treated from a very general viewpoint
in a number of papers by Adomian, -5

It is the purpose of the present work also to investi-~
gate stochastic Green’s functions, but from a somewhat
different point of view. Specifically, we shall confine
ourselves to random linear systems which exhibit a
property which we call “temporal homogeneity.” There
are two main reasons for doing this, First, this prop-
erty, a generalization of time translational invariance
for deterministic linear systems, is sufficiently gen-
eral that it appears to be implicitly assumed in virtual-
ly all calculations appearing in the literature (at least
those involving wave propagation through a random
medium). On the other hand, it is strong enough that it
enables one to derive a number of interesting implica-
tions, and provides a useful general framework within
which to categorize much of the work in this area. This
can be accomplished purely on the basis of an input-
output or “black box” approach, completely indepen-
dently of the detailed structure or even the existence
of any underlying stochastic equations of motion.

An important area involving random linear systems
is wave propagation through a random medium. The
present work is primarily motivated by this problem,
and much of the development will be made from this
point of view, For scalar waves the basic relation then
becomes

n(x, t)= [ d'dt' Gx,x', ¢, ¢ )fx’, t), 11
where, by casuality,
GX, X', 1,t)=0 t'>¢ 1.2

Here 7 is the observed field and f is the source density,
which is taken to be statistically independent of G,
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There is no loss of generality involved in considering
this system, The only this that is affected is the nature
of the nontime variables in G, and adaptation to other
random systems is trivial,

In Sec. I temporal homogeneity is defined and
motivated, The basic quantities (; and M, related to the
first two moments of G, are introduced and some of
their properties derived in Sec, III. A description of
the physical effects of fluctuations in terms of these
quantities is presented in Sec, IV, In Sec, V specific
examples of random linear systems are considered and
some explicit calculations of {; and M are performed,

A summary and conclusions are presented in Sec. VI,
Two Appendices are included.

il. TEMPORAL HOMOGENEITY

Consider as an example acoustic propagation through
a fluctuating ocean, It is well known that acoustic
sensors placed in the ocean often register outputs that
may be interpreted as stationary random processes, 7
This in turn would imply that the relevant sources are
themselves stationary. We are thus led to entertain the
hypothesis of the preservation of stationarity: Whenever
the sources consist of stationary random processes so
do the observed fields.

Actually, we shall confine our attention to random
linear systems having a slightly stronger property
which we call temporal homogeneity, This is simply the
requirement that the moments?® of the Green’s function
be invariant under any uniform displacement of all time
variables, i.e.,

<G(x1yxbt1+ast2+a»:<G(x1;x2yt1’t2)>’ (251)
(G(xl’ X, tl + a, iZ + d)G(X3, Xy, t3 + a, t4 + a))
:<G(x1y Xy, tla t2)G(x39 Xy t3: t4)>: (2° 2)

valid for all values of a. Here the brackets denote an
ensemble average, It is shown in Appendix B that
temporal homogeneity, which will be used extensively
throughout the remainder of this work, guarantees the
preservation of stationarity, *

Put another way, we are confining our attention to
random linear systems which, loosely speaking,
“fluctuate” or “oscillate” as opposed to proceeding
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FIG. 1. Diagrammatic representation of (j‘,,,(w).

“monotonically” as time progresses, The whole idea of
temporal homogeneity is simply an attempt to capture
this property in as simple and general a way as possi-
ble, It is interesting to note that in quantum field the-
ory10 (QFT) time translation invariance is equivalent to
energy conservation, The relationship of this to tem-
poral homogeneity will be quite apparent in succeeding
sections,

It is important to understand the types of ensemble
averaging which apply in Eqs. (2,1) and (2, 2), as well
as in succeeding sections, Since G is a function of the
medium alone, the average is taken over the ensemble
of all possible mediums, In practice this is often equiv-
alent to the ensemble S of all possible realizations of
the index of refraction, Many times f(x’, ¢’} will be
treated as a random function, with the ensemble of all
possible realizations denoted by F. We shall assume
that f and G are completely independent, Since (X, £}
depends upon both G and f, all averages involving it
must be understood to be over the ensemble SXF, In
calculating various averages extensive use is made of
the statistical independence of G and f, enabling one to
use such identities as

<(Jf> SXF — <G> s<f> Fo

With these conditions in mind, we shall henceforth
dispense with subscripts that specify the ensemble,

(2. 3)

11l. PROPAGATORS AND SCATTERING AMPLITUDES
A. Definitions

For notational convenience we shall write G(X,X’,¢,?')
as G,(t,t"), where the index m is used to specify the co-
ordinate pair (x,x’). For a general random linear sys-
tem, then, m simply represents all the nontime argu-
ments in G,

Let us consider first order moments of G. By tem-
poral homogeneity we have

(G a(t1, 1)) =(G (L4 = £y, O))

so that first-order moments are actually functions of
only one time variable. Define gm(w) by

Gm(w)= [ dt exp(=iwt)G,(t, 0).
By analogy with QFT we see that (,(w) corresponds to

6.1)

3.2)

m m
m+—®——>—m
= +
n——>—®+n
n n n

n n

FIG, 2. Diagrammatic representation of an(wua‘g,w:z)-

a two-point function, or propagator.'! Accordingly we
represent it diagrammatically as shown in Fig, 1, We
also may consider gm (w) to be a generalization of the
transfer function as it is defined for deterministic,
nonfluctuating linear systems,

Again invoking temporal homogeneity, it follows im-
mediately that second order moments of G depend only
upon three time variables. Accordingly we employ a
triple Fourier transform to define the quantity

G @y, o, ) = [ dbydtydtyexp(= iwly +iwyly = iwsts)
X <Gm(f15 tZ)Gn(iIS’ O)>°

Again from QFT we see that g,,m(wl, wy, w3) is simply a
four-point function, or a two-particle elastic scattering
amplitude. Specifically, ¢, represents a “collision”
in which an /2 particle is incident with energy w; and
leaves with energy w,, while the other particle, identi-
fied by the index n, is incident with energy wj; and re-
coils with energy w;— wy + w3, energy conservation be-
ing guaranteed by temporal homogeneity, This is shown
diagrammatically in Fig, 2,

(3.3)

One may show directly from the definition the useful
identity that

gmn(wiin’wS):gnm(w%wi_ <""2—}""’3, wl)o (3., 4)

This result is immediate from a diagrammatic point of

view, since both terms represent the same scattering
event,

It is useful to define the quantity 7 by
gmn(wl, Wy, wg) = 270wy — wz)gm(w1)gn(w3)

+an(w1,w29w3)o (3,, 5)

The decomposition (3, 5) is also familiar from QFT, It
corresponds to separating the contributions to gm,, into
a sum of “disconnected” diagrams as represented by
the 6 function term and a sum of “connected” diagrams
given by the M function, This is shown in Fig, 3.

PR
SR
LOOOOON)
BOOOOONN
LY

QXX

n

FIG, 3. Diagrammatic representation of the decomposition (3. 5). The blob representing M is crosshatched to signify that only

connected diagrams are included,
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The quantities  and M have just been defined by ap-
pealing to analogies with QFT, There is nothing new,
of course, about applying ideas from QFT to wave
propagation through a random medium, ' In previous
work, however, these ideas have been introduced at a
stage where dynamical calculations based upon some
stochastic wave equation are to be performed. In the
present work on the other hand, we see that the analogy
actually sets in at a much earlier “black box” stage,
with no reference whatever to detailed dynamics,

B. Limits

Every temporally homogeneous random system has
two important limits, The first of these is the static
limit, in which the rate at which the medium is fluctuat-
ing vanishes, Put another way, every member of the
ensemble S of possible systems13 is time invariant, 14
so that

G (t, ') =G, (t = 1), (3. 6)

This allows us to define the random time independent
Fourier transform

Go(w)= [ di exp(-iwh)G,(¢). 3.7

Therefore,
<Gm (tly tZ)Gn(tii’ 0»

=5 ) dwdw! expliw(t) — &) +iw t3(G,, ()G (W),

3.8
Substituting into the defining relation for g,,m yields

G mal@1s w2, @3) = 276 (01 = WHG R WG, (W3, (3.9)

from which it immediately follows that, in the static
limit,
l7”171:1(‘-’-)1) Wy, W3) = 2776(0)1 e wZ)KGm(wl)Gn(wa»
= (Gulw)(G (wsh ].

In terms of scattering, the » and n particles may no
longer exchange energy with each other, The great
majority of work in random wave propagation is done
in the static limit. ! The second limit of general in-
terest is the detevministic limit in which G, (¢,t’) be-
comes a deterministic function, In this limit there is
no distinction between (GG, and G,G, or between (G,
and G,,. It follows immediately from Eq. (3,10) that in
the deterministic limit

(3.10)

"'wmn(wbwhwii): 0. (3- 11)

C. Constraints

Temporal homogeneity guarantees the preservation
of stationarity, and indeed the defining conditions (2. 1)
and (2. 2) for one appear quite similar to the conditions
for the other as given in Appendix A, Stationary random
processes satisfy a very fundamental constraint im-
posed by the Wiener—Khinchin theorem. ¥ We address
here the question of finding corresponding constraints
obeyed by the Green’s functions.

Let G, (¢, t;) be any temporally homogeneous Green’s
function, Define the quantity
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falw; = [ dtyexp(= iwt)G, (1 +8, 1) =G pw).  (3.12)

It is easy to verify that f,(w; ) is a zero-mean station-
ary random process in ¢, and also that it is mutually
stationary in ¢ with f,(w’;¢) for all m, n, w, and ',
Calculating the correlation of two such processes
vields after some algebra the result

(Flw1; I (= w3500
= Eg;(—iaig—)fdw exp(- in)gm,,(wl,w,wa)

=G m@1)G nlws). (3.13)
Using Eq., (3.5) we obtain
Qm,wy;n, — wa; Wy = Wg) =M, (w4, Wy, w3), (3.14)

where @ is defined by
QUm,w;n,w’;w") = [ dTexp(-iw" TX f,(w; ) Fw’; 0).
(3.15)

From the Wiener—XKhinchin theorem we know that the
power spectrum of f,, (wy;f) must be nonnegative or

(3.16)

Likewise the coherence of f,(wy;?) and f,(~ ws; ) must
be less than or equal to unity, or

Qim,w;m,w;w’)=0,

!Q("",w;n,w';w")|2
(3.17)

With the help of Eq. (3.14) these translate into the basic
constraints

sQm,w;m,w;wMNRR,wn,ww"),

M (w1, wg, = wy) > 0 (3.18)
and
| M, (w1, wg, ws) |2

S M, (W, we, — )M, (W3, w1 — Wy t w3, — wg).  (3.19)

These constraints are valid for all real frequencies and
for all m and n, Identical constraints are satisfied by
G mny 28 may be verified by redefining f,,(w;¢), so that
the gm(w) term is no longer subtracted off, and then
going through the same steps,

IV.PHYSICAL EFFECTS OF FLUCTUATIONS

Within the context of second order statistics and the
frequency domain, there appear to be three general
types of effects which are produced by temporal fluctua-
tions in a random linear system, For definiteness we
again assume scalar wave propagation through a ran-
dom medium, These effects are most easily illustrated
when only a single point source is present, Unless
specified otherwise, we shall assume that the source
density in Eq. (1.1) is given by

LY =) - 1),

where f(¢’) is a stationary random process.

4.1)

Let P; be the source spectrum, Then the spectrum of
the observed field at X, P,, is given by
1
Pn(w) = | gm(w) lzpf(w) + 5; dw"lfmm(w’w’, - w)Pf(w,)’

4.2)
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where the subscript m refers to the coordinate pair

(X, r). Note that the requirement P, > 0 is guaranteed by
Eq. (3,18). Equation (4. 2) implies spectral broadening,
a well-known consequence of temporal fluctuations, %5
This is most readily apparent when the source is
monochromatic at frequency w,, i,e.,

Py(w) = 6w *+ wy) + 6w — wy). (4.3)

Then we have
Py(@)=| G n(wg) |8 (@ + wp) + 5 (@ = wg)]
+ @Y M, w0, wp, = ©) + M, (0, =0y, = w)].
(4.4)

In terms of scattering diagrams, we see that spectral
broadening is contingent upon the ability of the parti-
cles to exchange energy. It follows immediately that
there can be no spectral broadening in either the static
or the deterministic limit, It is clear that spectral
broadening can complicate the problem of analyzing the
spectral content of a source on the basis of the observed
spectrum, even if one has perfect knowledge of ( and

M

°

The other effects we wish to discuss involve co-
herence, If f(#) and g(¢) are any two mutually stationary
random processes, their coherence is defined by

Cre(w) = [P(w)P, ()] [ dTexp(~iw ) f(T)g*(0)),
(4.5)

where P; and P, denote the power spectra of f and g.
1t is straightforward to show on the basis of the
Wiener—Khinchin theorem!® that

0<|Cyp|<1. (4. 6)

K 1C, 1 =1, we say that f and g are perfectly coherent,

We first consider the coherence between source and
observed field. Using the same notation and physical
situation as for spectral broadening, one obtains

n\-1/2
Cralw) = (] Gm@)|*+ ~21—ﬁmem(w, O Igf((c:)))

X Galw).

Thus we see that an effect of fluctuations is to degrade
the source-field coherence. As M becomes more and
more dominant, the observed field becomes increasing-
ly independent of the source. Clearly the effect persists
in the static limit, This general result is indicative of
fundamental restrictions upon one’s ability to transmit
information through a fluctuating medium.

4.7

Also of interest is the coherence between the field as
observed at X; and the field as observed at X,. The re-
sult is

Cppfw)=D" [gdw)gﬁ“(w)P;(w)
+ % dw'Myy(w, @', - w)P,(w')], 4. 8)

where

D= (l gi(w)IZPf(w) + %—de’M“(w, w’, -—w)P,(w')>
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%(1Gate) 2P )+ £

o dw'Map(w, w’, - w)P,(w’)).

4.9

Here the subscript 1 corresponds to (r,x;) and 2 to
(r,%,). After some algebra, it may be shown from Eq,
(3.19) that Cy; satisfies condition {4, 6). In the deter-
ministic limit we again have perfect coherence, As
before, the effect of fluctuations is to degrade the co-
herence, a result which persists in the static limit, One
effect of this degradation is to place fundamental limits
on one’s ability to extract information about sources on
the basis of measured cross-spectral densities.

V. EXAMPLES

In marked contrast to the situation in QFT, it is not
difficult to find nontrivial random linear systems for
which 9 and W may be calculated explicitly, Two such
examples are given here, along with a brief discussion
of the relevance of temporal homogeneity to the far
more complicated situation of wave propagation through
a random medium,

A. Multiplicative noise

This example is perhaps the simplest conceivable
which still has enough structure to illustrate in a
reasonably nontrivial fashion all the basic results
derived in this work. Consider an N channel system
with outputs n,(£), n2(f), ..., ny(?) induced by a single
common input f{#) such that

M) = a, (O)F(2), 6.1

where the «,(f) are stationary random processes which
specify the system. With no loss of generality one may
write

ak(f) =1+ Bk(z)y

where 8,(f) is a zero-mean stationary random process,
Define

Conl) =B (1)B,(0)),
P, (w)= [ dt exp(- iwt)C (1),

(5.2)

(5.3)
(5.4)

so that P, is the power spectrum of 8,. From the
defining relation (1. 1) along with Egs, (5.1) and (5. 2) it
follows that

G, ) =[1+B,D]s(~1") (5. 5)
or

(Gult, i)y =0(t-1"), (5.6)
Likewise
(Gulty, 1)G (g, 1)y = (1 + B (8)16(t, — £)[1 + B8, (t5)]8 (85— 141

=[1+C,(t - t3)]6(t; — ;) 8(¢5 - ty).
(5.7)

Hence this system exhibits temporal homogeneity,
which is seen to result from the stationarity of the sys-
tem parameters 3,(f). Note that temporal homogeneity
sets in only affer the ensemble averages are taken,
From the definitions (3. 2) and (3. 3) one obtains

Gmw)=1, (5. 8)
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G mal@1, W2, w3) =218 (w1 = wy) + Ppp(wy — wo). (5.9)

This latter equation corresponds exactly to the decom-
position (3, 5), yielding

an(wly Wa, w3) = Pm"(wl - wz)a (5. 10)

Since 8,,(f) has zero mean, it must vanish in the de-
terministic limit. Therefore, M vanishes as well, In
the static limit 8,(f) has no time dependence., From
Egs. (5.3) and (5.4) it immediately follows that

Mo o(wy, wy, ws) = 278wy — WeXB B (5.11)

in the static limit, which on the basis of Eq. (5.5) may
readily be shown equivalent to Eq. (3.10).

Note that the basic inequality (3.18) is immediately
satisfied, A restatement of Eq, (4.6) requires that

| Pl =wg) |2 < Py = wg) P g = wy) (5.12)

but in the context of the present model this is simply a
verification of the inequality (3. 19).

Similarly, the various results of Sec, IV may be ex-
plicitly illustrated. Of particular interest is spectral
spreading. Assume a monochromatic input of frequency
wy. Let S,, denote the spectrum of 7,. Then from Eq,
(4, 4) we have

S (@)=58(w — wy) + 6w +wy)

1
+2_1T[Pkk(w"w0)+Pkk(w+w0)] (5.13)
so that the broadened portion of the output spectrum is
simply a sum of displacements of the relevant system
fluctuation spectrum, Unfortunately this simple result
does not in general hold for other models,

B. Reflections in one dimension off a randomly
moving point scatterer

In acoustics, temporal fluctuations may be thought of
as the motions of various inhomogeneities in the sound
speed, We treat here a drastically simplified facsimile
of such a situation, In particular, consider the case
where waves are allowed to interact with a randomly
moving point scatterer, Let the problem be restricted to
one dimension, We consider the case where the source
and receiver are located at the origin, as shown in Fig.
4, Let x(f) be the position of the scatterer. We assume
that

x()=b/2+(t)/2,

where b/2 is the average position of the scatterer and
e(t) is a zero-mean random process, the factor of
being chosen for later convenience. Suppose that a
source generating an input f{f) is placed at x =0 and
that we observe 7(¢) at x=0. The direct path from
source to receiver is subtracted out, so that 7(f) con-

(5.14)

S.
Re
| x(t |

FIG. 4. Relative position of source, receiver, and point scat-
terer for situation considered in example of Sec, V B, The
position of the scatterer varies with time.
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sists only of the echo from the scatterer, Furthermore,
we take the scatterer to be perfect which is to say that,
if the scatterer were immobile, 7(f) would be a time-
delayed replica of f{f). Accordingly, if ¢ were constant,
the Green’s function linking source and echo would
simply be given by

G(t,t')=acb(ct—ct’' =b—¢), (5.15)

where 2 is a constant specifying the scattering strength
and ¢ is the speed of propagation, Consider now the
case where ¢ is changing, In order for G(t,{’) to be non-~
vanishing, the scatterer must be at exactly the right
place at the instant of reflection so that a pulse emitted
at ¢’ will return at £. Clearly this reflection occurs at
time (£ +¢')/2, Thus Eq. (5.15) must be generalized to

t+
G(t,t’):acé(ct—ct’—b—e( 2 ))

It follows from Eq. (5.16) that the stationarity of ¢(¢)
in the weak sense of Appendix A is not sufficient to
guarantee temporal homogeneity, Instead we impose
the slightly more stringent requirements

(5.16)

gl t+a)=gx;t) (5.17)

and

fe,yitta,t' +a)=fk,y;t,t),
where a is an arbitrary time translation and where
glx,t) is the probability density of €(t) while f(x, y;t, )
is the joint probability density of e() and e(#'). By
virtue of Egs. (5.17) and (5. 18) these two quantities
may be denoted by g(x) and f(x, y; f - £’). As probability
densities they are such that

(ae® = [ dr alr)gl),
(Ble®), et = [ dxdy Blr,p)lx, y3t - 1),
where o and B are arbitrary functions,

With the help of Eqs, (5.19) and (5. 20) it is not dif-
ficult to show that

(5.18)

(5.19)
{5. 20)

(G(¢y, ty)) = acg(ct, - cty - b) (5.21)
and
(G(ty, 1)G(ts, £g))
=a%c*flcty— cty= b, cty~ cty=b; 5(t; + 1y =ty = 1y),
(5. 22)

Hence Egs, (5.17) and (5. 18) are sufficient to assure
temporal homogeneity.

We use Fourier transform Eq. (5.21) to obtain
G w)=aexp(-iwb/c) [ dx exp(-iwx/c)g(x). (5.23)

From this result we see that the effect of fluctuations on
g {w) is simply to introduce an attenuation factor given
by the integral. The effect is negligible unless the fre-
quency w is high enough so that the wavelength is of

the same order or less than the variations in the posi-
tion of the scatterer. It is precisely at these frequen-
cies of course that the motion of the scatterer seriously
disrupts the interference pattern, and the attenuation
factor simply represents the tendency of the “average
pattern” to be washed out to zero, It is also interesting
to note that ¢ (w) is completely unaffected by the detailed
structure of the dynamics of e(¢); thus it is unaffected

by passage to the static limit,
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Taking the appropriate triple Fourier transform of
Eq. (5.22) yields

g(wlyw%w:})
=atexp[~ i(wy +wyb/c] [ dxayat
X exp[— i(wy +wy)x/2¢ +i(wy - wy — 2w3)y/2¢]

X exp[i(wy — wq)t] flx,y;t). (5.24)

Thus in order to find ( (wy, w3z, w3) one must specify
flx,v;t), which requires a rather detailed knowledge of
the dynamics., Even knowing the power spectrum of
e(f) will not suffice [unless ¢(f) happens to be gaussian],
To find M note that, as 7, ¢({+ 7) and e(¢) will be-
come independent of each other. Therefore, we have

fle,y; ) =gk)g (), (5. 25)

where flx,y; *°)=lim;..f(r,v;?). Thus we may replace
the integrand in Eq. (5. 24) with [flx,y;8) - flx,y;%)]
+g(x)g(v). Upon doing this, the decomposition (3. 5)
immediately emerges, with

M(wy, wg, w3)
=a® exp[~i(wy +wy)b/c] j dx dy dt
Xexpl- ilwy T wa)x/2¢ +ilwy — wy +2w5ly/2¢]
X expli(wy— wi ][ fle, y;1) = flr, 35 )], (5. 26)

Thus the quantity 1/ again emerges in a quite natural
way, with the expression for it involving a better be-
haved integrand than the one in Eq, (5, 24), Note that
both g and M have much more structure in this exam-
ple than they did for multiplicative noise,

In order to obtain a more explicit expression for M,
the process e(t) must be spelled out in more detail. As
a very simple example, let us consider what may be
termed a Poisson transition model. We shall assume a
situation where, at instants determined by a Poisson
distribution, the particle suddenly jumps from where it
is to any point ¥ with probability g(x)dx of landing in
dx, I we let i dt be the probability of a transition
during df one immediately obtains

Fle,v; 1) =8(r = y)glk) exp(= p|¢])
+[1-exp(= p[t]))]gb)g(y)

from which M may be calculated explicitly, The result
is

(5.27)

W(wy, wy, wy) = [a(j"(w1+w3)

wy + - - +
o(52)o(=522)] 60w

Letting wy=- w;, M becomes

21
M(w - =
( 1y Wa, <""1) 'u2+(w1_w2)2

2 _ ._c9_1+w2>
x[a g( )

On the basis of Eq. (4.4) we see that for a monochroma-
tic input of frequency w;, the spectrum of the output will
be a Lorentzian centered about w,, but modified by a
form factor, The spectrum of ¢(/) itself is easily cal-
culated to be

2
jlo (5. 29)
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2
P, (w)= 5—&—% (5.30)
so that in this case the shape of the line broadening is
similar to the shape of the underlying fluctuation spec-
trum as in the multiplicative noise example only if the
form factor does not have much effect. Note that in the
static 1limit y — 0 the Lorentzian in Eq, (5,29) becomes
proportional to 6(w; — w;) and one may readily verify that
that W has the required limit as discussed in Sec. IIL

In the deterministic limit we have g(x) — §(x) and M

vanishes, as is also required.

C. Wave propagation through a random medium

Wave propagation through a random medium is, of
course, orders of magnitude more difficult than the
two examples just considered, and no attempt is made
here to perform detailed calculations, Instead a general
discussion is given concerned primarily with temporal
homogeneity.

The wave equation that suggests itself in the presence
of a time varying index of refraction is of the form!’
. 1, 3
vein(x, f) — c—%n (x, t)—aﬁ n(x, 1) =f(x,1), (5.31)
where n(X, f) is the index of refraction and ¢; is some
representative speed of propagation, We write

n(x, y=mx) +1(x,1¢), (5.32)

where m(X) is a deterministic function defining the un-
perturbed system while /(X, {) is a random function de-
scribing spatial and temporal fluctuations, Thus Eq,

(5. 31) becomes a stochastic partial differential equation.
Keeping Eq. (1.1) in mind we see that G satisfies the
relation

2 2
<V3— E—(cx—%lﬁ a%-z-)G(x,x',f, Fy=08(x~-x")6(t- 1", (5.33)

whereas G,, the deterministic unperturbed Green’s

function, satisfies

2 2
X) 0 . ’ ’ ’
[vi- ——mc%f ) o ]bo(x,x’,t— )= 6K —X)o(t =), (5.34)

Following standard procedure, ¥ one may show that
G and G, satisfy an integral equation of the form

G(X, X', E 1) = Go(X, X', £~ ') + [ AP dly GX, X, 1, 1)

XV (X, 4)Gy(Xy, X7, b= ") (5.35)
where
. 32
G[)(xi’ x" T):ﬁGo(xiyx,s T) (5., 36)
and where V is a stochastic “interaction potential”
given by
Vix, )= -01—2 [13(x, ©) + 2m (%) (%, £)]. (5.37)
b

Equation (5.35) can be iterated. Symbolically one has
G=Go+ [ GoVGo+ [ [ GVG VGy+o-, (5.38)

Suppose now that /(X, ?) is strong sense stationary!® in
time, It immediately follows from taking the ensemble
average of Eq. (5.38), that Eq. (2.1) is satisfied term
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by term. Similarly one may show that all higher mo-
ments of G satisfy the homogeneity criteria. Thus we
see that temporal stationarity in the index of refraction
guarantees temporal homogeneity in the Green’s func-
tion. As pointed out in Sec. III, the great majority of
calculations are performed in the static limit, which in
present notation simply amounts to removing any time
dependence from I, Temporal homogeneity then follows
trivially.

In the evaluation of the various moments of G it is
often useful to employ diagrammatic technique based on
Eq. (5.38). The topology of these diagrams is then
highly dependent upon what assumptions one makes
about the higher moments of I(x,#). This is analogous to
the fact that the precise nature of the Feynman
diagrams in a quantum field theory depend upon the
details of the interaction terms. Feynman diagrams
along with other field theoretic analogies have been
employed recently in a number of papers, 20-23

V1. DISCUSSION

In this paper we have proposed the idea of temporal
homogeneity. This property is sufficiently general that
it is probably safe to say that it has been tacitly as-
sumed in virtually all investigations of acoustic prop-
agation through a random medium. This is obvious for
work done in the static limit, Also, in those instances
where explicit time fluctuations have been considered
the object is usually to calculate spectral broadening, 2
but it is difficult to see how a meaningful observed
spectrum could even exist without temporal
homogeneity.

Proceeding by analogy with quantum field theory, the
main result has beeun the emergence of the quantities
G and M. They have been studied in detail with em-
phasis on general limits and constraints, Their useful-
ness in describing the effects induced by random fluc-
tuations has been demonstrated, Since these quantities
are intrinsic properties of the system itself and are
closely related to phenomena of interest, they may be
used as a basis for comparing different calculations
and systems., This has been demonstrated in the
examples,

Accordingly, our principal conclusion is that
stochastic Green’s functions in conjunction with tem-
poral homogeneity provide a general, unified frame-
work within which to treat a large class of random
linear systems, and within which to compare various
approaches and results,

We have seen that coherence degradation effects are
present whether or not the static limit is taken, An
interesting question for further investigation is the
extent to which these effects are altered by the static
approximation, and more generally the extent to which
this approximation is valid in specific situations,
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APPENDIX A: STATIONARY RANDOM
PROCESSES; WIENER-KHINCHIN THEOREM

We collect here a few of the properties of stationary
random processes utilized in the present work. Unless
specifically stated otherwise, we shall say that a ran-
dom function f(1) is stationary if for all time displace-
ments a

(flt+a) =(ft) (A1)
and
(flt +a)f*(ty + a) = (FE)F*(E). (A2)

Conditions (Al) and (A2) are also said to constitute
wide-sense or weak stationarity, Twice in Sec, V
stronger forms of stationarity to be obeyed by system
parameters are imposed which are spelled out in de-
tail in the text, If f and g are two stationary random
processes we say that they are stationary with respect
to each other, or mutually stationary, if

(flty +a)g™(ty + a)y = flt)g* (E)). (A3)

Much of the present work rests upon the Wiener—
Khinchin theorem which states that, for a stationary
random process f(¢), the power spectrum P(w) is such
that

P(w)=0 (Ad)

for all real w, where
P(w)= [ drexp(- iwT)( AT FHO). (A5)

Let f(#} and g(¢) be two mutually stationary random
processes, Then

k()= of(t) + Bg(t) (AB)

is also a stationary random process where « and 3 are
arbitrary. It is a standard exercise to show that the
imposition of the Wiener—Khinchin theorem on k() for
all a and @ produces inequality (4, 6).

APPENDIX B; TEMPORAL HOMOGENEITY AND
STATIONARITY PRESERVATION

We show here that temporal homogeneity is sufficient
to guarantee preservation of stationarity, Without loss
of generality we may consider wave propagation, in
which case the input function may be denoted by f(x, 7).
Input functions at all pairs of points are taken to be
mutually stationary in time, so that we may define the
quantities

F(x)=(fix, 1)) (B1)
and
Sx,y;2-t')=(fx, )f(y, t'). (B2)

The output field , whose stationarity is to be estab-
lished, is given by

n&x, = [ d [ at Gx,x, ¢, X, t). (B3)
Note that the time integration extends from — « to o,
Because of causality [Eq. (1.2)], however, the inte-

grand actually vanishes over the range ¢ <# <, On the
basis of Eqs. (B2) and (B3) one obtains
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(n(x, t+ )y, 1)
= [ &% @ [ ar [T ar (G, x4 T, 1)

XG(y,y', ¢, ')SE, y'; t" = 1'). (B4)

Now invoke Eq. (2. 2) with a=- ¢, yielding
(n(x, ¢+ )nfy, &)
=[awady [ar [Tat (G, x, T, ¢ - 1)

xXG(y,y',0,t' =S,y t" - 1'). (B5)
Change variables of integration to v and w where
v=tot, w=t'~t, (B6)
Then

n(x, &+ )n(y, )
=[ax'd% [Zaw [ av (G, X, 1,0)G(y,¥';0,w))

xS(x',y'50 - w), (B7)

Therefore, (n(x,f+ 7)n(y, )) is independent of £, Going
through similar steps yields

(nx, t)y = [ d*%* [ ar(G(x,x’,0,t) Fx). (B8)

Therefore, stationarity is preserved.
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The lower bounds on the total cross section and the slope parameter are obtained on the basis of the
analyticity and polynomial upper boundedness of the scattering amplitude and the unitarity of the S
matrix: o, > Cs ~° (logs)™% B> Cs ~>(logs)™* for some measurable sequences of s—oo. These bounds
hold for any t in O<t<4m?2. It is unnecessary in order to obtain our bounds that the scattering
amplitude has the crossing even property. If we assume this property, we can suppress the logarithmic
factors of our bounds. Also we obtain our lower bounds for any sequence of s—o, if we take the average

scattering amplitude.

. INTRODUCTION

There are many studies of the lower and upper bounds
on the observable quantities. We will take the following
principles as the basis: the analyticity and polynomial
upper boundedness of the scattering amplitude and the
unitarity of the S matrix. The first result is the
Froissart bound

(1.1)

Here C is a certain positive constant. Later C is con-
strained® as

2
LIRS #[logcc%)] as s—=,

where ¢ is any small positive constant and f(¢) -~ 0 as

¢ — 0, So this upper bound diverges, if we take the limit
e — 0. The removal of this superfluous e is attained®
and all the terms tending to infinity for s —« are ob-
tained?® in the asymptotic expansion of the Froissart
bound.

0,0:(8) s Cllogs) as s—.

(1.2)

First we consider the lower bound on the total cross
section. Jin and Martin* obtained the bound based on the
Herglotz function technique,

(1.3)

Then on the basis of the unsubtracted dispersion relation
and the Phragmen—Lindel3f theorem in the complex
function theory, Simon® showed the simplified deriva-
tion of this result in a slightly weakened form to hold
either in an s channel or in a » channel. He also im-
proved the logarithmic factor in (1.3) to (logs)™%. And
Cornille® pointed out the fact, based on the integral
expression of the elastic cross section

_ (% . do_ r° 2 .
ou=[ at%; _f dt|F(s, ) |?/ (64nk?s),
442

?

0401(s) = Cs~®(logs)® as s —~,

(1.4)

that the logarithmic factor in (1. 3) could be omitted in
the case of crossing even scattering amplitude. Simon
and Cornille made use of the Phragmen—Lindelsf
theorem and gave the lower bound like (1.3) for at least
one sequence of s —«, In this paper, we will prove the
lower bound on the total cross section for some mea-~
surable sequences of s — « without use of the

Vyukawa Foundation Fellow.
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Phragmen—Lindelof theorem and the crossing even
property of the scattering amplitude.

Secondly, let us research into the bound on the slope
parameter of the absorptive part of the scattering
amplitude,

B=B(s,t)= —d—ImF(s, 8/ ImF(s,t).

5 (1.5)

The upper bound on the slope parameter is easily ob-
tained using the cutting of the partial waves up to
CVslogs,

B=<C(logs)® as s—= in 0<¢<4m?. (1.6)

It is noted that this cutting is a usual technique to ob-
tain the Froissart bound, and the analyticity domain in ¢
of the scattering amplitude includes’ the region 0 <¢
<4m?. Here C refers only to a certain positive constant
and C should not be taken as the same value. Since

the Regge theory gives the slope parameter C logs, the
improvement of this upper bound (1. 6) is desirable,
This is attained® in use of the above lower bound (1. 3)
on the total cross section,

B=<C(Clogs as s—~« in 0<¢<4m?. 1.7

Next on the basis of Simon’s technique, the lower
bound on the slope parameter is obtained®

B(s,t=0)= Cs™®(logs)™® for at least one sequence of

§— %,

(1.8)

Although the Froissart bound was used in this case, it
was unnecessary'® and so the bound (1.8) was improved
by the factor s{logs)?. The bound (1.8) was proved only
for at least one sequence of s —«, In this paper it will
be also proved that the lower bound on the slope param-
eter is obtained for some measurable sequences of s

— o« without use of the Phragmen—Lindeldf theorem and
the crossing even property of the scattering amplitude.

The origin of the replacement of the condition “for
at least one sequence of s— ©” by “for some measurable
sequences of s —=” ig that the following formula is
available:
= glx)

P dx =0 for one sequence of z —,(1.9)

lim
Pl a

if
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J/P ézgzl.ctx <:°o’
a X

When «a is an arbitrary finite number, g(x)=> 0, and g(z)
approaches to zero for one sequence of z —«, So we can
avoid the use of the Phragmen—Lindel5f theorem, and
it is the origin of the unnecessity of the crossing even
property of the scattering amplitude that we can make
use of the formula®

R(x)

. b X
lim z =
=o Ja x+z

f” dx hix) ==,

(1.10)

(1.11)
if
(1,12)

where h{x) is any positive definite function of x. These
formulas are proved in the appendices.

It is also proved that we can suppress the logarithmic
factors in the bounds (1.3) and (1.8), if we assume the
crossing even property of the scattering amplitude.
When we take the average scattering amplitude, we ob-
tain lower bounds for any sequence of s — «,

This paper is planned as follows: In Sec. II, the gen-
eral framework is given. We derive lower bounds on the
total cross section in Sec. III and on the slope param-
eter in Sec. IV, We also consider the crossing even
case in Sec. V. In Sec. VI, we give discussions on our
results and make comparisons between ours and the
other bounds.

Il. FORMULATION OF GENERAL PRINCIPLES

In this section we present the formulation of the
analyticity and polynomial upper boundedness of the
scattering amplitude and the unitarity of the S matrix.
The dispersion relation is also given, which is essential
in order to obtain our bounds. For simplicity we con-
sider the elastic scattering with unit mass and neglect
the spin complications, If we include the spin, the re-
sult is the same with this paper for the imaginary part
of the helicity nonflip scattering amplitude.

The analyticity in ¢ of the scattering amplitude F(s,t)
leads to the following expansion:
F(s,1) _gn S S 30 @1+1)£,(s)P,(cosb). (2.1)
=0
Here s is the c.m. energy squared, { the c.m. momen-
tum transfer squared, % the c.m. momentum, ¢ the
c.m. scattering angle,
cosf=1 +222, (2.2)

and
s=4(1? +1), 2.3)

The polynomial upper boundedness of the scattering
amplitude is

|F(s,0)] <C|s|¥ as s—, (2.4)
From the unitarity of the S matrix, we have the
constraints

0<|f(s) |2 <Imf,(s) <1, (2.5)
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in the s channel physical region. Then the imaginary
part of the scattering amplitude and its derivative in ¢
are positive definite at the forward angle in the s chan-
nel physical region,

ImF(s,0)> 0, 2,ImF(s,0)20 for s=4, (2.6)

Similarly we have the constraints in the » channel physi-
cal region,

ImF,(u, 0)= 0, 3,ImF,(x,0)=0 foru=4. 2.7
Here
atF(s,O)Eé—a—F(s ) (2.8)

t=0°

For simplicity we consider the case i =0. The same
analysis holds for F(s, ) and 3,F(s,t) inany £, 0<¢<4.

We will essentially make use of the dispersion rela-
tion in order to obtain the lower bounds on the total
cross section and the slope parameter. It is known'!
that the dispersion relation holds in general with twice
subtractions on the above assumptions and the analyti-
city in s of the scattering amplitude,

F(s, ) =A(t) + (s - 5,)B(¢)

1o (s=s)?
7 f S TSP =)

4

U O R S
XImF(S ,t)+;/; du' (——————)‘lg‘m

XImF, (', t). 2.9)
Here
ImF,(u,t)=-ImF{4 - s - t, ). (2.10)

For simplicity we set s,=u,=0. When we take s and ¢
as the independent variables and make use of the formula

u=4-s-1, (2.11)
we get
8, F(s,t)=A"(#) +sB'(1)
+ 1rr ds’ o, ImF(s’, 1)
ﬂ/ —T( T-s)t
4
1 * u? ;
+ —T?f du'[matlmb‘s(u s t)
4
- (——1—* - —17) ImF,(/, t)]u (2.12)
w - 3

1. DERIVATION OF THE LOWER BOUND ON THE
TOTAL CROSS SECTION

Now let us derive the lower bound on the total cross
section. For this purpose, it is sufficient to show the

following:
lims*F(s,0)=C #0 for any sequence of s—, (3.1)
.
or
f: ds's’ ImF(s',0) = (3.2)
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The reason is as follows. The case (3.1) gives the lower
bound

|F(s,0)|2 Cs™ for any sequence of s —~ ., (3.3)
Also we have the estimates using the Schwarz
inequality,

2
|F(s,0)|? < [ @1+1)|f,(s) []
Z(zz+1) Z(zz+1 ) fi(s)[?
1=0
< L*ImF(s,0) as s -, (3.4)

Here we omit the constant factor and use the unitarity
constraint (2, 5) and the fact that the expansion (2.1} can
be cut at

L=KVs logs,

if we consider sufficiently high energies and K is a
sufficiently large constant. Hence we attain the lower
bound on the total cross section due to the optical
theorem for the case (3.1),

(3.5)

0yoi(s) = Cs™® (logs)™? for any sequence of s —
(3.6)
and for the case (3.2),
04,4{8) > Cs(logs)? (3.7)

for some measurable sequences of s —«, These are
summarized as follows:

Coi(s) = Cs™(logs)? (3.8)

for some measurable sequences of s —«, Therefore,
we obtain the lower bound (3.8) on the total cross
section from both of the estimates (3,1) and (3. 2).

In order to get the estimate (3.1) or (3.2), we negate
this

lim s?F(s,0)=0 (3.9)
.

for at 1east one sequence of s -« and
.7 ds’ s'TmF(s’,0) <o, (3.10)

Hereafter we will see that two conditions (3.9) and
{(3.10) lead to a contradiction.

First we derive the lower bound for the simple case in
which the unsubtracted dispersion relation holds

F(s,0)

_1 [T e I, 0)
m )

4

1
S
w

4

, ImF (', 0)
w -u ’

(3.11)

From (3,9), (3.10), and (A1) we have the estimates

lim sF(s,0)=0 (3.12)
S~ ©
and
© ? 7 0
lim [ gsr SIREEL0 (3.13)
o s'~s
4
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for at least one sequence of s — =,

So the dispersion relation gives

«© 4 0 «
limsf du’ E!—n,F—S(u—’—)=/ du' ImF(s’,0)<
s w-4+s

4

(3.14)
This leads to

f:du'ImFa(u',O)<oo , (3.15)

because the negation of (3.15) leads to a divergence of
the left-hand side of (3.14) by formula (B2) and thus to
a contradiction with the finiteness of the right-hand
side of (3.14). From (3.14), (3.15), and (B2), we have
the equality

S aw' mF ', 0)= [ ds’ImF(s',0) < (3. 16)
Then
s?F(s,0)

—_ 1 © YN ’ ® ’ u""4

__—;(f dssImF(s,O)+s/ du m

4 4
7 1 * 7 S'Z !
XImF,(u ,0)) + ;f as’ 5 —5 ImF(s’, 0)
4
=1 +1,. (3.17)

Hence we find a contradiction, because the integral I,
and the left-hand side of (3.17) approach zero due to
(Al) and (3.9), and I, is negative definite from the uni-
tarity constraints (2.6) and (2.7).

Next we consider the general case, that is, the twice
subtracted dispersion relation (2.9). This relation can
be rewritten as

F(s,0)
1 . 4 1 1 s
—A(0)+sB(0)+;/ ds (s'-s —87—372*)

4

1
(W' -4+ sh'®

xImF(s’,0) + %(s - 4)2f du’
4

XImFy(u', 0). (3.18)

Since we have the relations (A1), (B1), (B2), and
s F(s,0) — 0 for at least one sequence of s — « from
(3.9), we get

1 «©
B(O) - ~ /‘ ds’ Sl,flmF(s',O)
1 © 7’ 1 7
+;f du’ = ImFy(u’,0)=0. (3.19)
4

Then relation (3.18) is rewritten as

F(s,O):A(O)+%/”ds' (s l_s
——(s- / ! ImF O)

4 + s)
(3.10), and (Al), we have the estimates

- i) ImF(s’, 0)

(3- 20)
From (3.9),
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limF(s,0)=0 (3.21)
sam
and
lim [ st EEL0 g (3.22)
oo s'-s
4
for at least one sequence of s —»,
So the relation gives
. ImF (w’, 0)
lim(s -4 etk Al Rl
Lim (s ~4) d 4+s)u
(3.23)

= A(O)-f ds’ %ImF(s’,O)C
4

Since the right-hand side of (3.23) is finite from (3.10),
we have the estimate from formula (B2)

: = ImF,(u’,0)
hm(s—‘l)_/ K vy ey
4

=

=f e %ImF3(u’,0)<°o,, (3.24)
4
Then
A(0) - 1/ ds’ 1—,ImF(s', 0) - 1/ du’
T s T
4 4
1 ;
X u—,ImF3(14 ,0)=0. (3.25)

Thus we return to the unsubtracted dispersion relation
case (3.11), Therefore, we proved the lower bound
(3.8) on the total cross section.

1V. DERIVATION OF THE LOWER BOUND ON THE
SLOPE PARAMETER

In this section we derive the lower bound on the slope
parameter of the imaginary part of the scattering ampli-
tude for some measurable sequences of s —«», For the
derivation it is sufficient to show the following:

lims®3,F(s,0)=C#0 for any sequence of s~ «,
s (4.1)

or
4.2)

. as" "2 ImF(s’,0) =
The reason is as follows. Since we have the estimate
|3,F(s,0)|?

(1
<=
S

@1+ 1) + D f,(s) ))2

T s

N
C/}N| e
Me

n
1N

@+ 1)@ +1) 2@+ 1)@ +1) fi(s)[?
I=1

< éL‘latlmF(s,O) as §— o, (4.3)
we attain the bound for the case (4.1),
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3,ImF(s,0) = Cs3(logs)™ for any sequence of s — «,

4.4)
and for the case (4.2),

3,ImF(s, 0) = Cs2(logs)? (4.5)

for some measurable sequences of s —«, These are
summarized as follows:

3,ImF(s,0) = Cs™*(logs)™ 4.6)

for some measurable sequences of s — <, Then we ob-
tain the lower bound on the slope parameter (1.4),

[1/(s = 4)] I5.; RL+1)( +DImf (s)

B= 5% (217 Dimf,(9)

- 221+ D@ + DImy,(s)
(s — 4)2Imf,(s)

> 58,ImF(s, 0) 4.7
for the case
Imf(s)> 2 (21 +1)imy,(s). 4.8)
I=1

Here we also used the unitarity constraint 0 < Imf(s)
<1 to attain the last part of the estimate (4.7). We get
the lower bound

B=Cs™ 4.9)
for the other case,
Imf,(s) < 22(21+D)Imf,(s). (4.10)

1=1
Hence from (4.6), we attain the lower bound on the slope

parameter,
B= Cs%(logs)™ (4.11)
for some measurable sequences of s —«,

Now let us prove the estimate (4.1) or (4.2). For
this purpose, we negate this

lims®8,F(s,0)=0 (4.12)
sao

for at least one sequence of s —« and
S ds' '8 ImF(s’,0) < (4.13)

Hereafter we will see that the estimates (4.12) and
(4.13) lead to a contradiction.

First we consider the unsubtracted dispersion rela-
tion (3.11), Then the dispersion relation for the deriva-
tive in t of the scattering amplitude is

1 - 9. ImF(s’
atF(s,t):_f ds’ _t_m_,_(s__,i)
7 s'—s
4

) 7 s
L1 dlt,(qtlrr’lFa(u D Imlis(u ,;))o
T w—u W’ —u)
4

Here we used the relationu=4 - s-¢{, and s and / were
taken as the independent variables. Then

(4.14)

s8,F(s,0)
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1 <
= - ;/ ds’ atImF(S,, 0)

4

1 o
4

© ’ ?
+l/ ds,sBI,mF(s,O)
7 s'-s
4

_ 1 “du’ sImF,(u’',0)
w
4

' ~-4+s)

=J, +d, +Jg+J,e (4.15)

Since we assumed the unsubtracted dispersion relation,
the integral,

, ImF,(u’, )
f du u -4

4

(4.16)

is finite, so the formulas (B1) and (B3) lead the integral
J4 to zero as s — <, On the other hand, assumptions
(4.12) and (4.13) give the value zero to the left-hand
side of (4.15) and to the integral J, for at least one
sequence of s — o, from formula (Al), and make J,
finite. Hence we have the estimate

lim du’

s '
- W —d+s a:ImFs(u 10)
4
=f ds'atImF(s',O)<oo. 4.17)
4
Then formulas (B1) and (B2) lead to
j: ds’ 3,ImF(s’,0)= f: du' 3,ImF,(u’,0) < e, (4.18)

Now we can write the dispersion relation as follows:

$%3,F(s, 0)

——/ds
1 nd" F(s',0
—-;/ s's'8,ImF(s',0)

4

+s/adu’(—t4—a ImF,(u’, 0)
@ —dtslr i,

4

6 JmF(s’, 0)

+ mImFs(u"o)>] . (4.19)
This equation tells us that the left-hand side and the
first integral of the right-hand side approach zero for at
least one sequence of s ~ <, from (4.12) and (4.13), and
all the other parts negative definite for any s> 4 from
the unitarity constraints (2.6) and (2.7). Hence we have
the contradiction.

Next we consider the twice subtracted dispersion
relation (2.12) for the derivative in ¢ of the scattering
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amplitude. From the formula

s* 1 1 s
s%(s'-=s) s'-s & 7

(4. 20)

relation (2.12) is rewritten as
3,F(s,0)=4"(0) +sB’(0)

1 = 1 1
4

1 ° w’ (3-4)

4

1 1
- (m —_ ;ﬁ) ImF3(u', 0)} °
Since we have the relations (A1), (B1), (B2), and

s F(s,0) -0 for at least one sequence of s from (4,12),
we get

(4.21)

B'(0) - %f ds’ S—I,Ea,ImF(s',O)

4

+%/ du’;}a-atlmFa(u',O):O., 4.22)

4
Hence we attain

3,F(s,0)

1 /- 1
=A'(0)+ = !
A'(0) 77./; ds(s’—s
1/ 1 1
+;/ du'[(u————,_4+s - 7)a,ImF3(u',0)
4

1
- ?) 9,ImF(s’, 0)

1 1
(——-————————(u 557 )ImF (o, 0)]
We have the unitarity constraint
1 =
2, ImFy(u,0) =87 X L + D)Imf, (u)

u l=1

u‘34 <ImF3(u, 0) - 87 %Imfo(u))

>

and so

/ du’ %atImFa(u’, 0)

4

° 1
2/ du'(%atImFa(u', 0) ~ u—,iImFs(u’, 0))
4

1 - © 1
2 §/ du' %a,ImFa(u’,O) -lﬁnf du' u—,Imfo(u').
4 4

Then Theorem B and the relation “3,F(s,0)— 0 for at

least one sequence of § — =" lead to

A’(0) - 1[ ds' l,a,ImF(s',o)
T S
4
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1 “ 1 1
- ;r- / du’ [?a,ImFg(u',O)— FImFa(u',O)] =0,

4

(4.23)
Thus we return to the unsubtracted case (4.14)., There-
fore, we proved the lower bound (4.11),

Next we derive the lower bound on the slope param-
eter for the case 0 <¢<4. The slope parameter is

Ti (20 + 1)Imf, (s)Pi(2)

Bls, )= 225 =, (21 + DImE(5)P, () ’ 4.24)
where

z=1+¢/2K">1, (4.25)
Then we have the bound

B(s, t)> 38,ImF(s, 1) = Cs®(logs)™ (4.26)

for some measurable sequences of s — « in the case

©

12 Imf,(s) = 20 (21 + D)ImF (s)P,(2).

i=1

(4.27)

On the other hand, more discussions are necessary in
the case

Imfy(s) < 22 (21 +1)Imf,(s)P (z). (4,28)
i=1
We define the value v as
Plz)=2. 4.29)

Here v is not necessary to be the integer. We make use
of the following properties of the Legendre function
Pz):

P,(z) is an increasing function of I, (4. 30)

Pi(2)= 3P, (2) for P,(z)<2, 4. 31)

Pl2) > =P (2) for P,(z)> 2 (4. 32)
1 Sz-1)"¢ 1 .

for z>1. These properties are shown in Theorem C of
the Appendix. The case (4.28) is moreover divided into
two parts:

Imf(s) < 2: (21 + D)Imf,(s)P,(2)
1=1

<2 1}; (21 + DImf,(s)P,(2), (4.33)
Imf(s) < ,L (21 + D)Imf (s)P, (z)
s2£,(22+1)lmf,(s)P,(z)o (4.34)
For the case (4.33), we get the bound
8.0 g e 12
> 16;2 (4. 35)
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from (4,24), (4.31), and the unitarity constraint
Imy,(s)= 0. For the case (4.34), we have the bound

Zpp U DImf(s)Pi(z) 1
8k221>v(21+I)Imf:(s)Pl(Z) - 8t

from (4.24) and (4, 32). Hence we obtain the lower
bound (4.11) on the slope parameter for any case of ¢
in 0s¢<4,

B(s, )= (4.36)

V. CROSSING EVEN CASE

In this section it is shown that the logarithmic factors
can be suppressed in our lower bounds (3.8) and (4,11)
on the total cross section and the slope parameter re-
spectively, if we assume the crossing even property
of the scattering amplitude. In this case we have

ImF(w+2-¢/2,t)=-ImF(-w +2 -¢/2,¢)

=ImF(w +2-t/2,1), (5.1)
where
_S-u t_ 14
w=—g—=s-2+ 5 =-ut2-g. (5.2)
Then the unsubtracted dispersion relation is
1 /(= 2w’ '+2,0
F(s,O):w[ dw' 22 In,le(wg 2, ). (5.3)
mJ, w®-w
This gives
1 ©
w?F(s, 0) = — Ef dw’ 20" TmFle’ +2,0)
1 e 73
+—f (lw'—,zzi—z—ImF(w’—FZ,O)
TJ, w-w
=, + 1L, (5.4)

First we consider the case that the first integral is
finite. Since the second integral approaches zero for
any sequence of w — <« {from (A1), we have the bound

|s°F(s,0)|= C#0 for any sequence of s —.  (5.5)

if we take the twice subtracted dispersion relation, the
similar argument in Sec. III leads to the bound (5.5)
in the case of finite I;.

Now we can see that the above arguments apply fo a

finite region ¢, <t <0 such that we have the estimates
j4“{zw'2w'1mﬁ(w’+2—f/2,t)>0, (5.6)

from the continuity in ¢ of ImF(w’ +2 - ¢/2,¢) and the
unitarity constraint

|ImF(w’ +2-¢/2,)|<ImF(’ +2,0).

Hence in the finite region {, <# <0, we obtain the lower
bound

(5.7

|F(s,t)|= Cs™ for any sequence of s = (5.8)
in the case of finite I,,
From the unitarity constraint (2.5), we have the
estimates
1 ol 2
ImF(s,0)> / dz| 2 21+ 1)f,(s)P,(2)
" 1=0
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1 o ,_ 1 0 .
:;[ dt|F(s, ?) | zgf dt| F(s, ) |2 (5.9)
-8 ¢
Here we used Eq. (2.2), the formula
1 2
f dz Py(2)P (@)= 57 Sum » (5.10)

-1

and for simplicity we are omitting the constant factor.
Hence we have the bound

ImF(s,0)> Cs® for any sequence of s+ (5.11)

in the case of finite ;. On the other hand, we of course
have the bound (5.11) for some measurable sequences
of s —« in the case of infinite I,. Therefore, we obtain
the lower bound on the total cross section in the cross-
ing even case

O,:(s) = Cs™® (5.12)
for some measurable sequences of s — «,

Next we congider the derivative in ¢ of the scattering
amplitude in the crossing even case. The unsubtracted
dispersion relation is

1 * 2w’
d F(S,O):;f dw'<matImF(w’+2,0)

2
1 ImF(w’ +2,0
T rapmEe 20

This gives

1 <«
wzatF(s,O):—;f dw’<2w’8tImF(w’+2,0)
2

602
+ mImF(w' + 2, O))

1 © , 2(.0,3 , 0
+;/ dw matImF(w +2, )

2

=J, +d, + . (5.13)

As shown in the case of (5.5), similar arguments lead
to the lower bound at =0 in the case of finite J,,

(5.14)

and there exists a finite region ¢, <¢ <0 such that the
lower bound (5.14) holds for the finite J,. From the uni-
tarity constraint (2.5) and the formula

|3,F(s,t)|= Cs™ for any sequence of s —,

1
2 ? I3 _— 2 2
/ dz (1 = 2)P}(2)P}(2) = 57 (4 DB, (5.15)
=1
we have the estimate
2,ImF(s,0) = %Z 21 +1)(2 + DImf,(s)
1=1
1 i © 2
> E/ dz (1 = 2 2)| 22(21 + 1)f,(s)P}(2)
1 I=1
(5.16)

1 0
> 5[ dt|a,F(s,t) 2.
Y
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Hence we have the lower bound in the case of finite J,,

9,ImF(s,0)> Cs™ for any sequence of s ~w. (5.17)

Also we have a bound (5.17) for some measurable se-
quences of s -« in the case of infinite J,. Hence we
can suppress the logarithmic factors in the lower
bounds (3.8), (4.4), and (4.11), when we assume the
crossing even property of the scattering amplitude.

VI. DISCUSSION

In this paper we derived the lower bounds (3.8) and
(4.11) on the total cross section and the slope param-
eter respectively on the basis of the analyticity and
polynomial upper boundedness of the scattering ampli-
tude and the unitarity of the S matrix. It is unnecessary
to derive our bounds that the scattering amplitude has
the crossing even property. The origin is on formula
(B2). This was used® already in order to derive the
lower bound on the slope parameter for at least one
sequence of s —«, Our bounds hold for some measur-
able sequences of s —w, It is due to formula (Al) that
we can replace the previous condition® “for at least
one sequence of s — =" by “for some measurable se-
quences of s —=,” Also it is noted that we did not use
the Phragmen—Lindel3f theorem.

It is noticeable that our bounds (3,8) and (4,11) on
the total cross section and the slope parameter hold for
any sequence of s —« in the case of (3.10) and (4,13)
respectively. If we define the average scattering ampli-
tude as

— 1 s
F(s,t)= E/ ds’ F(s', 1),

4

(6.1)

we can obtain the lower bound (3. 8) on the average total
cross section for any sequence of s -« irrespective

of case (3.10). The reason is as follows: We have the
estimate in case (3.2)

$'ImF(s,0)> [°ds’ s'TmF(s’,0) - (6.2)

for any sequence of s —«. Since we observe the inte-
grated quantity in experiment, it may be accepted ex-
perimentally that we have the lower bound (3. 8) on the
total cross section for any sequence of s —~, Similar
arguments of course apply to the lower bound (4,11) on
the slope parameter. It is noted that the more compli-
cated average scattering amplitude was constructed!?
in order to derive the lower bound on the elastic

cross section,

It was pointed out by Cornille® that the logarithmic
factor of the lower bound (1, 3) can be suppressed for
the crossing even scattering amplitude, He made use of
the estimates

=S

>f°d, men
s

*1

(6.3)

and the lower bound (5.8) in a finite region ¢, <¢ <0 for
at least one sequence of s — « in the crossing even case,
If we try to apply his argument to our case without the
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s —u crossing even property, we must treat the case

j;wdu'(u’—4)|ImF3(u',t) =w for f <t<0, (6.4)
where ImF,(x’, t) is not assured to be positive. Then we
cannot use formula (B2), so we don’t suppress the log
factor in our lower bound (3.8). The lower bound (3.8)
without the log factor holds for some measurable se-
quences of s — =, if we assume the crossing even prop-
erty of the scattering amplitude. For the slope param-
eter there is the same situation with the total cross
section case,

It appears that our bounds (3.8} and (4. 11) are far
away from the experimental situation. Now let us take
the dynamical assumption that the imaginary part of the
scattering amplitude dominates the magnitude of the
amplitude at high energies. Then we have the estimate

F(s,0)~ImF(s,0). (6.5)

From (6.5), (3.1) and (3.2), we have the lower bound
on the total cross section

0,(s) = Cs*(logs)™® (6.6)
for some measurable sequences of g = =,

This bound of course holds for the weaker assumption

|ReF(s,0)/ImF(s,0)|< C as s —~ e, (6.7
For the slope parameter, if we take the dynamical
assumption

0,4(s)=32n/s as s —w, (6.8)

then this corresponds to the case (4.10) and we have
the bound (4.9). If we take the assumption

Utot(3)> C, (6.9)
then we get the estimate
Siay 1+ D@2+ DImf(s) €
B> > — (6.10)
3(s - 4)y,, , (21 + 1)Imf,(s) ~ 6dr °
where
=[(s - 4)C/327]" /2 (6.11)
and so
167 35 (97 + 1)Imy () < ¢, (6.12)
1
s=4 4 2

These bounds (6.6), (4.9), and (6.10) are the improved
results owing to the dynamical assumptions.

Lastly we discuss the other bounds. The lower bound
on the slope parameter was shown by MacDowell and
Martin'® as follows:

b e of3).

6.13
3670, B? ( )

The equality of this bound is attained,' if the scatter-
ing amplitude have the exponential behavior with re-
spect to the momentum transfer squared ¢{. There-
fore, this lower bound (6.13) is very nearly realized
for the experimental values of the total and elastic
cross sections and the slope parameter. This bound
does not give the lower bound with respect to s, since
the value B=0 may be allowed.
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Also the lower bound on the imaginary part of the
scattering amplitude has been known'® for any physical
energy region and a certain physical and unphysical
continuum region of ¢,

ImF(s, )= kgfom(s)PL (1 + 2—;) , (6.14)
where
L=[3(®R+31/7- % (6.15)
and
R=[8B(s,0)]* /2. (6.16)
This bound (6.14) holds for
(321383)2 sf<4 (6.17)

at high energies. Since this bound includes the total
cross section and the slope parameter as the input in-
formation, we can obtain the lower bound on the second
derivative in ¢ at t=0 of the imaginary part of the
scattering amplitude,

8’ ImF(s,0) _ B (1 1 )

4 \" " 2K°B

ImF(s,0) ~ 4 (6.18)

APPENDIX A

In this appendix we prove several mathematical
formulas.

Theorem A:
lim dx —&— =0 for one sequence of z —«,
oo x -2 =1

(A1)

a

when ¢ is a certain positive constant and the following
conditions hold:

limg(z) =0 for one sequence of z —«, (A2)

2=

< lgly)

f dx————l—<
x

a

(A3)

Proof: In order to derive (Al), we divide the integral
into four parts:

©

fdx

glx)
X =2z —1ic

z(1-p)

VS

glx)
x -z —i€

2(1+b)

’/z(l = /z(IOb)

X

=L+ +1, +1,. (Ad)

Here b is a certain positive constant such that 0 <b <1.
Then we get the following estimates based on the condi-
tions (A2) and (A3):

x)r z—\/hf

xlg(

Illlsf” iz

a

—-0 as

(AB)

z — o,
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- 2(1=b)
1-» dx lglx)!

|L|< =22 ~0 as z—w, (A6)
vz
\I4|<1+bf FRLY-C21 Y ey A1)
X

2{l+b)

1

1
L=pP / dy ;g(z +bzy) +ivg(z)
=1

:P/ ' dy % lg(z +b2y) — g(Z - bzy)) +ing(2)

—bzg'(z) +ing(z) —~ 0 for one sequence of z <, (A8)

Here P denotes the principal value of theintegral, It is
noted that the justification of the estimate

z2g'(z)—0 as z -« (A9)
is seen in Ref. 18, when g{z) approaches to zero.

Q.E.D.
APPENDIX B

Theorem B: For any positive number g and any func-
tion x(x), we obtain the formula

. < - e
1:_n:z/ dxx—(flzzf dx hi(x) 1f/ dx | h(x) < oo,
a a

’ (B1)

= if/ﬁdxh(x):w and x(x) >0,
a (B2)

a a

lim dximi;:o if/ dx [ (%) | < oo,

oo

These hold for any sequence of z — «,

Proof: For the cases (B1) and (B3), we can get the
following:

/ndxh(x)—zfndx

a

h(x)

(VES
x+z

xh(x) | x

:{f dx Ytz l dxm]h(x”
vz ©

s/ dx\—/z\/_%zlh(x)H/ dx|h(x)|—~0
a vz

for any sequence of z — =,

(B4)

For the case (BZ) the procedure is as follows:

\/-—_,_zf dx h(x)

a a

-fw dx h(x) =

a

(B5)

for any sequence of z — «, Q.E.D.
It is noted that Theorem B was given in Ref. 9 and
was recapitulated for self-consistency.
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APPENDIX C

Theorem C: The Legendre function P,(z} has the
following properties for z > 1:

P,(z) is an increasing function of [, (C1)
aa—ZP,(z) > $P,(z) for P(z)<2and [>1, (C2)
3 1
P,(2)> 57— P,(2) for P(2)=2. {C3)
3z ( 1)
Pyoof: We know'® the formula
2_1 n n
2)—1+Z (——) 2 +v=(m=1)7?
n=l 2 m=1
- (m-1)]. (c4)
This formula holds for any number v. Then we can
clearly see that
0
a_ypv(z)>0 for z>1, (€5)
so we get (C1). From (C4) we have
H
] 1 nfz-1\n
P*(Z)_g i) 5( ) )
XI[2+1=(m =172 = (m - 1). (C6)
so we get the following for P,(2)<2 and I>1:
LP(2) 2302 4D 2 3E +DP ()2 1P,(2). (e3))

Here we used the positivity of each term in (C6) for z>1,
Since we have the following for P,(2) > 2:

<2y Lo ( 1>"f'1 12 +1- (m =10 - (m-1)] (C8)
mt (1 1) el

and

0 1 1 [z-1\n

a_zPl(Z)Z(Z—l) g(n!)z( 9 )
XM [2+1-(m=1% = (m~1)], (c9)
m=l

we obtain the inequality (C3). Q.E.D.

IM, Froissart, Phys. Rev. 123, 1053 (1961); A, Martin,
Phys. Rev, 129, 1432 (1963).

’F.F.K. Cheung, Nuovo Cimento A 61, 438 (1969); A, Martin,
Scattering Theovy: Unitavity, Analyticity and Crossing
(Springer, New York, 1970), p. 38.

3T, Uchiyama, Prog. Theor. Phys. 45, 1960 (1971),

4Y.S8. Jin and A. Martin, Phys. Rev. 135, B1369 (1964).

B. Simon, Phys. Rev. D 1, 1240 (1970).

$H. Cornille, Nuovo Cimento A 4, 549 {1971).

YA. Martin, Nuovo Cimento 42, 930 (1966),

8T, Uchiyama, Nucl. Phys, B 96, 186 {1975).

T, Uchiyama, Prog. Theor. Phys. 55, 1871 (1976).

1B, K. Chung, Nucl, Phys, B 105, 178 {1976). See, however,
the note added in proof of Ref. 9 and Theorem C in the Ap-
pendix of our paper.

ty,S. Jin and A, Martin, Phys. Rev. 135, B1375 (1964),

12H. Cornille and A, Martin, Nuovo Cimento A 10, 739 (1972).

135, W, MacDowell and A, Martin, Phys. Rev. 135, B960
(1964).

4, Uchiyama, Soryusiron Kenkyu (circular in Japan) 47, 401
(1973); M. Jacob, CERN 74-1§ (1974).

15T, Uchiyama, Phys. Rev, D 10, 999 (1974),

16M, Sugawara and A, Kanazawa, Phys. Rev. 1283, 1895 (1961).

Tadashi Uchiyama 417



Isotropy subgroups of SO(3) and Higgs potentials®

Burt A. Ovrut

Enrico Fermi Institute and the Department of Physics, The University of Chicago, Chicago, Hlinois 60637

(Received 4 March 1977)

A method is given for determining the isotropy subgroups of an arbitrary, irreducible representation of
SO(3). These subgroups are explicitly worked out for low-dimensional representations. As an application
of these results we contruct the most general, renormalizable, SO(3) invariant Higgs potentials for these
representations, determine the local minima of the potentials and discuss patterns of spontaneous

symmetry breaking.

I.INTRODUCTION

A renormalizable quantum field theory involving
massive, intermediate vector bosons can be obtained
by coupling self-interacting scalar bosons (Higgs
bosons) to an appropriate gauge theory. The self-
coupling of the Higgs bosons is so chosen that, at any
point of specetime, the vacuum expectation value (VEV)
of this field is nonzero. This has the effect of reducing
the symmetry group of the theory from the original
group G of the gauge theory down to the “symmetry
group” of the VEV of the Higgs field. Since this VEV is
an element of a vector space carrying a representation
(usually irreducible) of G, it is clear that the “sym-
metry group” of the VEV is precisely its isotropy sub-
group (see Sec. 2). For convenience, the Higgs
bosons are usually supposed to be in the lowest-
dimensional (nontrivial), irreducible representation of
G. Such a representation has a very simple isotropy
subgroup structure, namely all nonzero elements have
isomorphic isotropy subgroups, Therefore, in these
theories, the direction of symmetry breaking (i. e., the
direction of the VEV in the vector space carrying the
representation) is unimportant. If, however, the Higgs
bosons are in higher-dimensional irreducible represen-
tations of G the isotropy subgroup structure becomes
very complicated. There are, as a rule, many non-
isomorphic isotropy subgroups for such representa-
tions, Therefore, the direction of symmetry breaking
becomes important (since different directions may mean
different isotropy subgroups and, therefore, completely
different physics). The Lagrangian for the Higgs bosons
always has the form L=T-V, where T is the kinetic
term and V is a polynomial in the fields called the
Higgs potential, The direction of symmetry breaking
can be found (to lowest order) by determining the local
minima of the Higgs potential. Symmetry breaking oc-
curs in the directions of these local minima,

In this paper we consider theories where G =SO(3).
A method is given for determining the isotropy sub-
groups for any irreducible representation of SO(3), and
the isotropy subgroups for low-dimensional representa-
tions are tabulated. Finally, we construct the most
general, renormalizable, SO(3) invariant Higgs poten-
tial for both the five- and seven-dimensional irreduci-
ble representations, We then determine the local

AWork supported in part by the NSF under Grant MPS 74-
17456.
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minima of these potentials and discuss the pattern of
symmetry breaking. To carry through this program,
we find it necessary to determine the isotropy sub-
groups for certain representations of SO(2),

2. ISOTROPY SUBGROUPS

Let G be a Lie group. Let V be a real, finite-dimen-
sional vector space with positive definite metric g,,
such that V carries an orthogonal representation of G,
Denote, for any element x of G, the corresponding
linear operator on V by Af(x), Fix a vector ¢’ in V.
The set H, of all elements of G whose corresponding
linear operators leave & invariant {easily shown to be
a subgroup of G) is called the isotropy subgroup of the
vector £/, We note, for example that H, =G and that,
for any £f in V and for any nonzero real number %, H,,
=H,. We emphasize, however, that the isotropy sub-
groups for different £’s need not be identical, or even
isomorphic.

Let £ be in V and H, be its isotropy subgroup, The
set of vectors of the form nf =A%, (x)&’, for all x in G,
is called the orbit of &i, and is denoted O,, If 7t
=A',(x)£7, then it is easy to show that H,=xHxx!. H, is
isomorphic to H, but is not necessarily identical to it.
Consider vector &% with norm #, Since the representa-
tion is orthogonal, any vector n’ contained in O, has
norm #, and therefore O, lies on the sphere in V of
radius 7. O, will be called an isolated orbit if there is a
neighborhood of O, on the sphere in which no vector, not
in Oy, has isotropy subgroup H,. It is clear from this
definition that Oy is trivially an isolated orbit. For a
nonzero vector & it is not hard to see that O, is an
isolated orbit if and only if O, is an isolated orbit,
where % is a nonzero real number,

H, is called a principal isotropy subgroup if, given
any isotropy subgroup H,, H, is conjugate to a subgroup
of H,. If H, is a principal isotropy subgroup then O, is
called a principal orbit. It has been shown! that if G is
a compact Lie group, then a principal isotropy subgroup
must exist and the principal orbits are not isolated
orbits (except in the trivial case when G acts transitive-
ly on spheres),

Isotropy subgroups have the property that they are,
topologically, closed subsets of G, To see this, let H,
be an isotropy subgroup, and let {gk} be any sequence
of elements of H, converging to g in G. The sequence
{A%,(g,)} must converge to A;(g), and A%,(g) must also
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leave & invariant. Hence, g is in H,, and H, is a closed
subset of G, In practice this result greatly reduces the
number of possible isotropy subgroups of G.

3. ISOTROPY SUBGROUPS OF SO(2)
A. SO(2) and its closed subgroups

Let V be a real, two-dimensional vector space with
positive definite metric g,,. Denote by SO(2) the (com-
pact, Abelian) group of all linear mappings A?; from V
to V which leave g,, invariant and which, with respect
to an orthonormal basis, have determinant 1. The
closed subgroups of SO(2) are SO(2) itself and, for each
n=1, the cyclic group of order n, denoted Z,, For
example, Z, is the trivial group of one element.

B. Representations of SO(2)

Denote by V, (n= 1) the vector space of all symmetric,
nth rank tensors over V., It is easy to show that dimV*®
=n+1. To Af, in SO(2) assign the linear mapping from
V" to V" which sends 7°"°% to Af, .- - A7 T%°°¢, By these
assignments V" becomes the carrier space for an
orthogonal representation of SO(2), Such representa-
tions are reducible for n= 2, Let Vj denote the two-
dimensional subspace of V" consisting of all symmetric,
traceless, nth rank tensors over V, V{ is a stable sub-
space under the group action on V” and therefore V," is
a carrier space for an orthogonal representation of
SO(2). It is well-known that these representations are
irreducible and that, with the exception of the one-
dimensional, trivial representation, all irreducible
representations of SO(2) are in this class, It is impor-
tant to note that, for all n, these representations act
transitively on spheres in V", i. e., for any two ele-
ments A*7°, B*°¢ with the same norm there exists some
A, in SO(2) such that A**°=A% < A°,B***/, Since SO(2)
is Abelian, this implies that all elements of V" (with
the exception of the zero element) will have identical
isotropy subgroups.

The above representations of SO(2) on V" are reduci-
ble. Since SO(2) is compact, these representations are
completely reducible into a direct sum of irreducible
ones, The decomposition of an element of V" into a
linear combination of irreducible tensors is well known
and given by

Tavecde _ Aabocde o B(ab-ogdc) + ..+ Tabrde 1)

where 79%°*® jg 2 multiple of g .- g% when n is even
or k%% ... g% when n is odd. A®"°¢ B®°  etc,, are
all traceless, symmetric tensors, This decomposition
is unique,

C. Isotropy subgroups

The elements of V" have an interesting geometrical
property that will allow us to determine the isotropy
subgroups of SO(2) and will be of use to us later on.
Let A%y, ... ,A%, be z unit vectors in V such that the
angle between neighbors is 27/n, The symmetrized
product A(‘g)e oAi,),) will be called an #-star and denoted
by xt.;¢ (see Fig. 1). An n-star obviously has isotropy
subgroup Z,, We note that any element in the orbit of
an n-star is itself an n-star, Stars have the following
properties,
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FIG. 1. A§,A%,,A%), is a 3-
2 star, Its isotropy subgroup
fwith respect to SO(2)] is Z,.

AIE)

@)

Theovem 1: x%,;° is traceless if n is odd. Further-
more, when # is even, the traceless part of the n-star
is precisely that #-star minus some multiple of a sym-
metrized product of metric tensors,

We will use Theorem 1 to determine the isotropy sub-
groups of SO(2) and return to the proof of the theorem
later. Consider V,". For # odd x%,;° is traceless and
therefore an element of V", By the transitivity of the
SO(2) action on V" we see that any element of V" is (to
within sign) a unique real multiple of an n-star, There-
fore, every nonzero element has isotropy subgroup Z,.
For n even the traceless part of x%,,¢ is simply x¢,,°
minus some multiple of a symmetrized product of
metric tensors, For example, if X3}’ is a 4-star, then
its traceless part is given by x2% - § g%%¢°, Since all
elements of SO(2) leave g,, invariant we see that the
traceless part of x{,,° also has isotropy subgroup Z,,
By transitivity we see that any element of V" is (to
within sign) a unique real multiple of the traceless part
of an n-star, Therefore, every nonzero element has
isotropy subgroup Z,.

Now consider V", Any element of V" can be decom-
posed into the linear combination of irreducible tensors
given in Eq, (1), Remembering that elements of V™
are multiples of the traceless parts of m-stars, we
have the unique decomposition

peede __ boed, (gboede) Trabeed
T —‘anx?n) €+ () & REERE AL e, (2)

ne2)

where T7%%°°% is ayg'e. . g% when 1 is even and
asx¢, - - £ when n is odd. The a,’s are constants,
We can now, by inspection, determine all isotropy sub-
groups for the reducible representations of SO(2)
carried by V", For example, consider V3, Then for any
7e% in V% we have

be b ( b
7% = ag X35 + ayxHe™.

The possible isotropy subgroups are as follows, For
a;=a;=0, i, e., for 7°°=0 the isotropy subgroup is
SO(2). For a;#0, a;=0 the isotropy subgroup is Z,,
For a;#0 the isotropy subgroup is Z,, Moreover, since
all 3-stars are on the same orbit, the Z; orbits (al-
though no Z, orbits) are isolated,

We now prove Theorem 1, Let # be odd and assume
X{ny is traceless for m=1,3,,..,n. Then x%,Y is an
element of Vy™ and by transitivity every element of
Vy™ can (to within sign) be written uniquely as a multiple
of an m-star, Consider any (z + 2)-star y§..§%. Its
trace is a symmetric, nth rank tensor and therefore
has the unique decomposition

vogd, aoe {goo _bc) ¢ 2 )
Xni83 = @pX T+ X @T0y8% + e e o Fax g™ - 87,

where the a,’s are constants, For x%,.8 nonzero it
follows that the isotropy subgroup is Z, for ¢ <#, But
since every element of SO(2) leaves g, invariant, the
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isotropy subgroup of x{,.§% must contain Z,,,, Therefore,
X4$5¢ must be traceless, Since X%, is traceless, it
foilows, by induction, that x{,° is traceless when » is
odd, Now, let # be even and assume x{,f — €, g%+ - -+ g%
is traceless (for appropriate c,) for m=2,4,...,n,
Consider any (2 +2)-star x%,.8° Its trace has the uni-

que decomposition

oepd, ~o {gve ) (
X‘ir»g)d _anx%nic + an-2X(f,-2)gbc toeot ang ot 'gbC) ’
where the a;’s are constants, Now, if x¥,.§%
- aog(‘“’ .- g% is nonzero, its isotropy subgroup must
be Z, for ¢ = n. But the isotropy subgroup must contain
Z w2+ Therefore,

Xt = g0,

This implies that the traceless part of x%..5% is given

by x4:8% - ¢,2 g%« g% Since the traceless part of

X%, is obviously x%5, — (- 2)g°°, the second part of the the-
orem follows by induction,

4. 1ISOTROPY SUBGROUPS OF SO(3)
A. SO{3} and its closed subgroups

Let W be a real, three-dimensional vector space with
positive definite metric g,,. Denote by SO(3) the (com-
pact group of all linear mappings Af; from Wto W
which leave g,, invariant and which, with respect to an
orthonormal basis, have determinant 1, The closed
subgroups of SO(3) are,?? to within conjugacy, SO(3)
itself, SO(2), the normalizer of SO(2) denoted N(SO(2)),
for eachn>1 Z,, for each n> 2 the dihedral group of
order 2n denoted D,, and the proper symmetry groups
of the dodecahedron, the cube, and the tetrahedron
denoted Y, O, and T respectively.

An SO(2) subgroup of SO(3) is completely specified
by specifying a nonzero vector &£ that it leaves in-
variant, N(SO(2)) is precisely SO(2) itself along with
all elements of SO(3) which are rotations by 7 around
any nonzero vector orthogonal to £ (and products of
these elements),

B. Representations of SO(3} and the subduced
representations of SO(2)

Denote by W", for n =1, the vector space of all sym-
metric, traceless, nth rank tensors over W, It is easy
to show that dimW"=2x+1, To A, in SO(3) assign the
linear mapping from W” to W" which sends 7°"°¢ to
Al o+ M T%°, With these assignments W" becomes the
carrier space for an othogonal representation of SO(3).
It is well known that these representations are irreduci-
ble and that, with the exception of the one-dimensional,
trivial representation, all irreducible representations
of SO(3) are in this class. We will give a method for
determining the isotropy subgroups of these representa-
tions. To this end we first consider the subduced rep-
resentation of an SO(2) subgroup.

Consider any SO(2) subgroup of SO(3). W" carries a
representation of SO(3) and therefore a representation
of SO(2), which is said to be subduced from the SO(3)
representation, For n>1 the subduced representation
is reducible, and, since SO(2) is compact, it is com-
pletely reducible. Therefore, any element of W" can be
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written uniquely as a linear combination of tensors
which are irreducible under SO(2). We want to deter-
mine this decomposition. As a first step we prove the
following theorem,

Theovem 2: Let T°' "¢ be any symmetric, nth rank
tensor over W and £° be an arbitrary unit vector. Then

Tab"c:(n)lwab"o*+("_1)1\,1{@"50) Foeet (I)A’W(aEb e EC)

+ oy MET . E°, (3)
where (p)M'e""® = (p)A1® ¥ and (p)M=>***£, =0 for all
p=1,...,n and this decomposition is unique.

Proof: Denote by g.,, the induced metric on the two-
dimensional vector space orthogonal to £%, Note that
Sab =Z1as T £.E, and therefore 8% =g,% + £%,. It follows
that g,%%,=0. Now write

Tab*rc 5:1& 51)3 e acyTaB'W .

Substituting for all 03, in this expression and expanding
out, we find

T =gt glp 85T + nungibls s - - £, 7577
Foes b meangltatse s £TTE 7
T T kg £y)E £,

where the m,,’s are nonzero rational numbers. We let

q7abes a . o Be o
oM = ﬂ'l(p)cglagiﬁ o £, T

for all p=0,...,n. Tensor (,,M® " is symmetric
since T**"*" is symmetric and (,M ®**¢, =0 follows
from the fact that g,%%,=0. This decomposition is ob-
viously unique, which proves the theorem.,

We note that (,,M " "X¢, =0 implies that ,,M " is
a tensor over the two-dimensional vector space
orthogonal to &,.

Consider the SO(2) subgroup of SO(3) that leaves
some unit vector £, invariant. By theorem 2 any ele-
ment of W" can be uniquely decomposed into a linear
combination involving symmetric tensors over a two-
dimensional vector space orthogonal to ;. Using Eq.
(2) we write any such two-dimensional tensor as a
unique linear combination of n-stars. Substitute these
linear combinations of n-stars into the £, decomposi-
tion. Using the tracelessness of elements of W", solve
for (,A. By rearranging these (;,M terms, we obtain
a unique decomposition of elements of W" into a linear
combination of SO(2) irreducible tensors.

As an example consider W? and the SO(2) subgroup
that leaves £, invariant. Then by Theorem 2 any 7% in
W? can be written

T% =M + (1)M(a5b) + (o ME“E. 4)
From Eq. (2) we have

@M = aXT, + agg?,

M =agXly,.

(5)

Substitute Egs. (5) and (4). Take the trace, set it equal
to zero, and solve for My. We find that My =a, — 2a,.
Rearranging so that each term is traceless, we have
finally that
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T = (8% - 3 8%) +BKE, + 38%) +vx 8",
where @, 3,7 are constants.

Given an element 7°°*? of W”", we now show that a
simplification in its tensor decomposition is obtained
by decomposing with respect to a special unit vector.

Lemma 1: Given 7%"°? in W" there exists a unit vector
7° with the property that 79"y, . . 511, = const X 0%,

Pyoof: Consider the smooth mapping 7: S? ~ 1R de-
fined by f(£) = T%"*%, - - £, for each unit vector £,. S? is
compact and, recalling that the continuous image of a
compact set is compact, this implies that £(S?) is a
compact subset of IR, But then £(S*) must be closed and
bounded, and therefore f has a maximum value, Let
7, be any unit vector for which f is maximum. Let 7,(f)
be a one-parameter family of unit vector such that
1,(0) =1,. Then

G| _ 4 (e .
26 |,= 28 T 7),,(49)'0

— (T, « o) agy| o
an V],

dn,/dd |, is perpendicular to 7, but otherwise is arbi-
trary. Therefore,

Ty, « + 0, =constxn°,
which proves the lemma.

If we now decompose T% "¢ with respect to this n°
and use Lemma 1, we find that the 1-star term must
vanish, This simplification will be very useful when
we discuss SO(3) invariant Higgs potentials.

Finally, we prove a lemma that we will need in Sec.
S.

Lemma 2: Let T***® be a symmetric, nth rank tensor
over W, If T%"*%¢ £, «++ £, =0 for arbitrary £, in W,
then 794 =0,

Pyoof: For n=1 the result is immediate. Now con-
sider n>2. Let A, and B, be two, arbitrary, linearly
independent vectors in W, Consider vectors of the form
n,=A, +AB, for arbitrary », Substituting for 1, in the
equation T%"“'n_n, «+n, =0, we find

(TP MA By >« BN+ oo+ (qT® %A, - - A B\ =0,

where p,...,q are nonzero integers. But X is arbi-
trary. Therefore, all the coefficients of the polynomial
must vanish. In particular T%°%A_--A_B,=0. Now B,
is an arbitrary vector. Therefore, 7% “A,--A,=0
for arbitrary A, in W. Repeating the above process

n -1 times, we have finally that 7%"*%¢_ =0 for arbi-
trary vector £,, Therefore, 7%"*? =0,

C. Isotropy subgroups

Recall that W" carries an irreducible representation
of SO(3). We can determine the isotropy subgroups
using the SO(2) decomposition discussed in the pre-
ceeding section. The results for n=1,2,3,4 are
tabulated in Table I.

Our method for determining isotropy subgroups is
best illustrated by examples.
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TABLE I. The isotropy subgroups of the 22+ 1)-dimensional,
irreducible representation of SO (3) for n=1,2,3,4. When the
number m of isolated orbits {on a sphere) of an isotropy sub-
group is nonzero, then the total number of orbits (on a sphere)
with that isotropy subgroup is also m. For any », an element
of W™ has an SO(3) isotropy subgroup if and only if it is the
zero element,

number of isolated orbits
(on a sphere of nonzero

n isotropy subgroups  radius)

S0@3) 0
S0@)

2 SO(3)
NS0 (2)
D,

3 S0 3)
S0 )

4 SO (3)

N
o
COOODONINS OOOHFHHHO ©iNO

l.hn=2

With respect to an arbitrary SO(2) subgroup (which
leaves £° invariant) we have the unique decomposition

T = a (£ ~ 5 g™) + B(XE, + 54) +yx "€, (6)

where ¢, 8,y are arbitrary constants. In Appendix A we
show that

Xt + b =5y,
where x% y%, £° are orthonormal vectors. The first term
on the right-hand side of Eq. (6) has isotropy subgroup

N(SO(2)). Each of the remaining two terms has isotropy
subgroup D,,

An element of W" (for any n= 1) has isotropy sub-
group SO(3) if and only if it is the zero element [since
the SO(3) representation is irreducible]. O, is trivially
an isolated orbit, It is clear that an element of W? has
N(SO(2)) as an isotropy subgroup if and only if 7%
= (£’ - 7g°%) for some unit vector £, Moreover,
since all tensors of the form £%£%— g% are on the same
orbit it follows that these are precisely two, isolated,
N(SO(2)) orbits for tensors of fixed norm (one for a > 0
and the other for « <0). Let 7°*=*£% - § g% for some
&%, and let &° be any unit vector such that 6°%,=0, 7
is invariant under rotations by 7 around 8. In Appendix
A we show that

Tab:__%(oaﬁb_’agab)_*,x(uyb)’ (7)

where 6%, x° y® are orthonormal vectors, We can now
determine the remaining isotropy subgroups,

The second and third terms in the decomposition in-
volve a 2-star and a 1-star respectively. It is clear,
therefore, that a tensor which does not have N(SO(2))
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as an isotropy subgroup can be at most twofold invariant
around an arbitrary unit vector £°. We can immediately
rule out ¥,0, T and D, Z, for n > 2 as possible isotropy
subgroups, Given any element 7¢% in W? lemma 2
assures the existence of unit vector n* with the prop-
erty that when we decompose T°° with respect to 1° we
get

T =a(fn’ - 5¢%) + ax'ay?,

For B#0 and |a/8(# %, T°° does not have isotropy sub-
group N(SO(2)). It is easy to see that such 7% have D,

as an isotropy subgroup (since the first term does not

break the D, invariance of the second term). D, orbits

are obviously never isolated orbits.

2n=3

With respect to an arbitrary SO(2) subgroup (which
leaves £° invariant) we have the unique decomposition

be__ a(gngbgc

( 5bcy
a C)+}3X%gf+)q(a bic)

+ émi"(g”“ - 5£"¢°), (8)
where a, 8, v, 0 are arbitrary constants and x%, %, £% are
orthonormal vectors, The first and second terms on the
right-hand side of Eq. (8) clearly have isotropy sub-
groups SO(2) and Dy (see Fig, 2) respectively, The
orthonormal vectors x% y%, £° lie along the twofold sym-
metry axes of a tetrahedron (see Fig. 3). Therefore,
x'%y%¢ has isotropy subgroup 7. The last term in
Eq. (8) is invariant under rotations by 7 around x%;,
and therefore its isotropy subgroup contains Z,,

It is clear that an element of W° has SO(2) as an
isotropy subgroup if and only if 7°% = a (£2£2£° ~ £ gte)
for some unit vector ¢, Since all tensors of the form
£9%E0 ~ $£@g®) are on the same orbit, it follows that
there is precisely one, isclated, SO(2) orbit for tensors
of fixed norm, The remaining terms in the decomposi-
tion involve only 3-, 2-, and 1-stars, It follows that a
tensor that does not have SO(2) as an isotropy subgroup
can be at most threefold invariant around an arbitrary
unit vector £°, We can immediately rule out ¥, O and
D, Z, for n>3 as possible isotropy subgroups. The re-
maining possibilities are T, Dy, Dy, Z3, Z,, and Zy,

We first consider the possibility of T being an iso-
tropy subgroup. Assume that some element 7%% has T
as an isotropy subgroup, Let ¢, 8%, £° be orthonormal
vectors along the three twofold axes of T, Then T9%
is invariant under rotation by 7 around £° and the de-
composition of T°* with respect to £* is given by

Tebe a(gugbgc_ %E(cgbc)) +,w((a bgc)

P— .
FIiG. 2, A G)A(Z)A(g) 1s a 3-star. It is invariant under rotation
by 27/3 around axis £ and by 7 around axes A%;, for i=1, 2, 3,
Therefore, its isotropy subgroup [with respect to SO(3)] is

D,,
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where y#0. Contracting o® twice into 79%¢, we find that
T%q,a,=—5at%

But 7%°a,a, is invariant under rotation by 7 around
@, and £° is not. Therefore, o =0, T“”C——x"‘y”zc’ is ob-
Viously twofold invariant around x° and y°. Therefore,
(or 8%) and y*=g* (or o*). Thus we have shown
that 7°% hasg LSotropy subgroup 7T if and only if T°%
—701(“I3b.£°), where o, 8% £° are any orthonormal vec-
tors, Since all tensors of the form o ?8%:® are on the
same orbit, it follows that there is precisely one,
isolated, 7 orbit for tensors of fixed norm, Let 7¢%
=x'%’:9 for some x%, 9%, £°, and let 5° be a unit vector
along one of the threefold axes of 7, In Appendix B we
show that

x¢=aqa

T = (5/6V3)(5°6%6° — $6'%¢™) + {3 x2%s, ©)
where X3 is a 3-star orthogonal to 8°, We can now
determine the remaining isotropy subgroups,

Assume T%° has D; or Z, isotropy subgroup, Let £
be a unit vector along the threefold axis of D3(Z;). Then
T°* is invariant under rotation by 27/3 around £° and
the decomposition of 7% with respect to £° is given by

Tabe “a(éai £° — -g‘“tf”")%x“‘ (10)

where 8+ 0 [or T°*° would have isotropy subgroup SO(2)]
and la/81#5/4/2 (or T°%* would have isotropy sub-
group T), & is clear from the decomposition that 7¢%
has isotropy subgroup Dj if and only if 7% =BxP%¢ are
on the same orbit, it follows that there is precisely
one, isolated, D; orbit for tensors of fixed norm. Let
Tebe — y4%¢ for some 3-star, and let & be a unit vector
along one of the three twofold axes of D;, In Appendix B
we show that

Tebe 2 (5(1 5%5¢ —

%6(‘1“(317::)) + ?_X(ayb()c) . (11)

For o #0 in Eq. (10) it is clear that 7°% has isotropy
subgroup Z3 and that there are no isolated Z; orbits,

Now assume 7°% has Dy or Z, as an isotropy sub-
group, Let £° be a unit vector along one of the twofold
axes of Dy(Z,), Then the decomposition of 7%%¢ with
respect to £° is given by

Tebe U(Eaﬁb’g’c— %g(agbc)) + 7/X(aybéc)(/

where y# 0 [or T%% would have isotropy subgroup SO(2)],
a+0 (or T would have isotropy subgroup T) and

la/y| =% (or 7% would have isotropy subgroup D).
Assume 7% has isotropy subgroup D;. Then there is

an axis orthogonal to & such that 7°% is invarjant under
rotations by = around this axis. Let a, be a unit vector
along this axis, Contracting o, twice into 7°°°, we find
that o must be zero, This is a contradiction, and there~
fore no element of W* has isotropy subgroup D,. Every

I'1G. 3. The orthonormal vectors x%, y*, and &¢ lie along the
two fold symmetry axes of a tetrahedron, The unit vector ¢
lies along one of the tetrahedron’s threefold symmetry axes.

Burt A. Ovrut 422



TABLE II, The most general, renormalizable, SO(3) invariant Higgs potential for the (2n+1)-dimensional, irreducible representa-
tion of SO(3) (n=2,3). To insure that the VEV of the Higgs field in nonzero, we take u®> 0 and A> 0. The isotropy subgroups of the

local minima of the potential are given.

n Higgs potential isotropy subgroups of the local minima
V=— @2/2)TRT + A\/4)(TPOT,,)? lel>0 NS0 @)
+¢T®T, TC, c=0 N(SO(2)), D,
3 V= @/2) T T, + (\/4) (T T, )2 >0 T
+ e THT Ty T Ty, c=0 $0(2), T, Ds,
Z3y Zyy Z4
~A/2<¢<0 Dy

tensor of the above form has isotropy subgroup Z, and
there are no isolated Z, orbits,

Since Zy is not a subgroup of Z;, Z, caunot be a
principal isotropy subgroup. Since SO(3) is a compact
Lie group, it follows! that there must exist elements of
W* with isotropy subgroup Z; and that no Z; orbits are
isolated, This same procedure can be applied for any »,

5. HIGGS POTENTIALS FOR SO(3)

In this section the most general, renormalizable,
SO(3) invariant Higgs potential for the (2n +1)-dimen-
sional irreducible representation of SO(3), where n
=2,3. We then determine the local minima and find the
associated isotropy subgroups. The results are tabulat-
ed in Table II, Renormalizability demands that the Higgs
potential be at most fourth power in the fields, This re-
quirement limits the form of the potential and has con-
sequences for the direction of symmetry breaking,

An=2

To fourth power in the field there are precisely four
SO(3) scalars® that can be formed from 7°%, namely
YubTabs TdebcTca! (Y“bTab)29 and T‘”’TbcTCdea0 HOWGVGI‘,
the fourth term is a multiple of the third, Note that

T% TbchcTid} =0.

Expanding this expression and remembering that 7°° is
traceless, we find that

To0T, T T,y = 5(T90T,,) . (12)

Therefore, the most general, renormalizable, SO(3)
invariant Higgs potential is given by

V== (W¥/2)T%T,, + (/D (T®T ) + ¢ T0T,, T%,,  (13)

where p2, A, and ¢ are arbitrary constants. To insure
that the VEV of 7°° is nonzero, we demand that u®> 0
and x>0, For ¢=0 it is easy to see that V has extrema
at 7 =0 (local maximum) and T°*T, = p%/A (local
minimum), Therefore, the VEV of 7% is nonzero and
has norm p/vVa, However, the direction of the VEV is
arbitrary. Therefore, the isotropy subgroup will be
either N(SO(2)) or D, depending upon the direction we
choose for the VEV of the Higgs field. Now assume
c+0, Recall that for any 72° in W? there exists a unit
vector 11° such that

T = alfn’ - 5g°) +8v ey, (14)
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where x%, y°, 7° are orthonormal vectors, Using Eq.
(14), we find that T%'T,, = 2o% +3p?
and
17, 7%, = § o~ o,
Therefore, the Higgs potential is a function of o and 8

only, To find the local extrema we solve the equations
avV/ea=2a V/aB =0, There are three sets of solutions,

lL.La=g=0

This corresponds to the zero vector. However, the
matrix

v 'V
3ot dq 2B
Bda 38°

evaluated at =3 =0 has the form

b

independent of the values of u%, , and ¢, Therefore,
the potential always has a local maximum at 7%%=0,
This implies that the VEV of 7% is always nonzero.

2 oy =[-3c+(9c® + 24N>} 2] /AN, =0

This corresponds to two orbits of tensors, each ele-
ment of which has isotropy subgroups N(SO(2)). For
¢ >0 matrix (15) has the form

+
for the o (,, orbit and
+
-+

for the o, orbit, Therefore, for c> 0 the potential has
a saddle point on the a(,, orbit and a local minimum on
the o (., orbit, For ¢ <0 we find the reverse situation,
i, e., the potential has a local minimum on the aq,,
orbit and a saddle point on the a ., orbit,

3. )= [3c £ (9c? + 24Na?) 2] BN, B = + 20,

Note that la()/8| =3%. Therefore, from Eq, (7) we
know this solution corresponds to two orbits of tensors
{one o (., and the other o), each element of which has
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isotropy subgroup N{(SO(2)). Furthermore, the norm of
any tensor on the oy,, (o (,) orbit is easily shown to be
the same as the norm of any tensor on the — (+) orbit
of Sec. 2, Since w(,y>0 and () <0, the two orbits of
this section are precisely the same orbits as in Sec, 2.

Therefore, for any lcl > 0 the potential has one local
minimum, and it occurs on an N(SO(2)) orbit, The VEV
of the Higgs field must lie on this orbit and have
N(S0(2)) isotropy subgroup.

Bn=3

To fourth power in the field there are precisely four
50(3) scalars that can be formed from 7%°, namely
TabcTabc’ (TubcTnbc)29 TabchchiechfM and szcTadcTMfTef.
However, the last turn is a linear combination of the
second and third. Let £ be an arbitrary vector and con-
sider any element 7°°° of W3, Then L% = T°%¢_is an
element of W*, and from Eq, (12) we know that

LabLbcLCdea = é(Labl'ab)zv
Therefore,

(2 TaabTBbcTrcd dea - TuabTBaan-d Tfad)g ageﬁysf =0,
Symmetrize this expression over o, 8, v, and f. Then,
by Lemma 2 we have

ZT(Dtlabl TBbcTHclef)da — T(alabl TBabT‘}'h:dl'1-~f)‘:d°
Expanding these expressions and contracting o and y
with B and f respectively, we find that

Tubcy;iedefT“f = %(YubcTabc)z - TubchodedTafm
Therefore, the most general, renormalizable, SO(3)
invariant Higgs potential is given by

V=- (“2/2)(7ubcTabc) + ()\/4)(’1‘1“7‘:1!)0)2

+ T T, T T g (16)
where p?, A, and ¢ are arbitrary constants, To insure
that the VEV of 7°% is nonzero, we again demand p’
>0 and A >0, For c=0, V has only one local minimum
which occurs when T°%T,, = u?/x, Therefore, the VEV
is nonzero and has norm p/Vx, Again, the direction of
the VEV is arbitrary and may have six different
isotropy subgroups depending upon the direction we

choose. Now assume c# 0, Recall that for any 7%*° in
W? there exists a unit vector n* such that

T = a(rfn"n® ~ 302" )k Xy +ox i, 1
where x%,9°%,1° are orthonormal vectors, Using Eq,
(17), we find that

7T, =2q+ 182+ ¢4
and

To%°T, T T, =[44/(25) ]t + £a?8?

2
+33 0% + 8t + {657 +[3/(18)

Therefore, the Higgs potential is a function of o, 3,
and y only. On physical grounds we want V to approach
+ for large values of the parameters, It is not hard to
show that this will be the case if and only if ¢ > - 3/2,
From now on we will assume this is the case. There

are seven sets of local extrema solutions, However,
only four of these correspond to possible local minima,
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Of these four sets, two represent the same 7 orbit and
the other two represent the same D; orbit. The two
different solutions are

1.8=+2u/\+2c)"?, a=vy=0

This corresponds to one orbit of tensors, each ele-
ment of which has isotropy subgroup D;, For ¢> 0 the
matrix of second partial derivatives of V (call it M) has
the form

0

Therefore, for ¢ > 0 the potential has a saddle point on
this orbit, For - »/2<c <0, M has the form

+
+

>

0

and therefore the potential has a local minimum on this
orbit.

2 y=2\/6 y/IN+(4/3)c]"'?, a=8=0

This corresponds to an orbit of tensors, each element
of which has isotropy subgroup 7. For ¢> 0, M has the
form

+

4

+

and, therefore, the potential has a local minimum on
this orbit. For — »/2<c <0, M has the form

’
+

and therefore the potential has a saddle point on this
orbit,

Therefore, for ¢ > 0 the potential has one local
minimum, and it occurs on a 7 orbit. In this case the
VEV of T°* has isotropy subgroup 7. For — /2 <c¢ <0
the potential has one local minimum, and it occurs on a
D orbit, Therefore, the VEV must have isotropy sub-
group D;. For ¢ < - )/2 the potential has no local
minima, We note that for both the five- and seven-
dimensional representations all local extrema occurred
on isolated orbits (when ¢ #0),
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APPENDIX A
(1) Consider the tensor T%®=y%3, + 3g%® orthogonal to
unit vector &, By definition ¥%, = —o"a® for some unit

vector a®., Let 8° be a unit vector orthogonal to ¢° and
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£° and consider x%= (1/vV2)(¢* + 8% and y*= (1/V2)

X (- a®+ %), The vectors x°,3°, t% are orthonormal.
Solving for a® we have a®=(1/V2)(x® - %), Substituting
this expression for a® in 7%® and noticing that g%°
=x%® +y%?® we find that T°0 =x 8y®,

(2) Consider the tensor T°%=£%%~ 3%, and let 5°
be any unit vector orthogonal to £°, Let 8% be a unit vec-
tor such that g%, = %6, =0 and consider x°= (1/v3)
X (5% +8%) and v¢ = (1/V2)(£° - f%). The vectors x%,y%,5°
are orthonormal and £°= (1/V2)(x® +%), Substituting
this expression in T°°, we find

T =5 g +x 0P — § g
Remembering that g%° =g%® - 5°3°, we have finally
Tubz_ %(5:1513_ égab) +x(ayb).

APPENDIX B

(1) Let x%, »°, &% and 3° be the unit vectors of Fig, 3
and consider the tensor 7°%¢=x "% Now

x%=(1/V3)(5° + VZ2a%), v*=(1/V3)(5°+ V35%),
and
g =(1/V3)(6* + V24,

where o "8%® is the 3-star x4 orthogonal to §°, Sub-
stituting these expressions into 7°%, we find

T2 = (1/3V3)(6%6%5° + 26 “[a %8 + o’y + %]
+2V2x8%). (B1)
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Now a8 + & ‘y® + 8%, is an element of V2 the
isotropy subgroup of which obviously contains Zg,
Therefore, it must be a multiple of g5°, and, compar-
ing the traces of these two tensors, we have

P8 + Py + gty = - 3 gl (B2)
Substituting Eq, (19) into Eq. (18), we have finally that

Tebe _ (5/6m(éa6b5c— %5 (agbc)) + % %X?gf.

(2) Consider the tensor 7T%%¢ = x3% = ¢ %3*5?> where, by
definition of a 3-star, the angle between neighbors is
27/3. It is clear that o, 8%, and &° lie along the three
twofold axes of Dy, Let 2% be a unit vector in the plane
of the star such that z%,=0. Then

@%=—3(6°-V32% and B=- 3(6°+ V3z9),

Substituting these expressions into 7°” and using the
results of Sec, 1 of Appendix A, we find that

Tubczg(éaébéc_ %5 (agbc)) +%X (“ybGC)’

where x% 49 5% are orthonormal vectors.
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An attempt is made to gain some insight into the statistical character of the normal frequencies of a long
chain of harmonic oscillators with randomly disordered masses. Instead of being concerned with the limit
L—oo of a chain whose random characteristics do not depend on its length L, the paper deals with the so-
called diffusion limit where the “size” of the randomness in each of the masses tends to O like L ~'/2.

1. INTRODUCTION

Since the pioneering work of Dyson® and Schmidt,?
there has been continued interest in the vibrational
properties of disordered chains of harmonic oscilla -
tors. *~® Lieb and Mattis® gave a good introduction to the
analytical aspects of this topic; the numerical work
done in this field was reviewed by Dean.”

The literature dealing with the disordered linear chain
is mainly concerned with the problem of calculating
and describing the vibrational spectrum (distribution
of the normal frequencies) in the limit of an infinitely
long chain. In principle the probiem of determining the
spectrum was solved more than 20 years ago by Dyson®
and later by Schmidt.? The analytical intractability of
their solutions, however, makes a general examination
of the qualitative behavior of the spectrum very difficult.

In this paper we pursue a different and, as it turns
out, much simpler approach to the randomly disordered
linear chain. Instead of dealing with the limit L — « of
a chain whose random characteristics do not depend on
its length L, we rather consider the so-called diffusion
limit, where the “size” of the randomness in the masses
tends to 0 like L™'/2. For this limit we have powerful
theorems at our disposal,®'° which enable us to gain
some knowledge of the statistical character of the
normal frequencies.

More specifically, we consider a chain (with fixed
ends) of L masses, each coupled to its nearest neigh-
bors by identical (nonrandom) linear springs. The
masses are assumed to have the form

mj(e):m[l ‘vepd, j=1,2,...,L,

where » > 0 is a constant and the uj’s are identically
distributed (not necessarily independent) mean 0 random
variables with range in {-1,1]. Then the parameter

e [0,1[ is a measure of the randomness of the masses
w,. We are interested in the statistical properties of
N(JSZ:L,e), the number of normal frequencies of the chain
in [0,€]. Our main result, Theorem B in Sec. 2B, can
be interpreted as follows. If the /.Lj’s constitute a
stationary stochastic process with sufficiently strong
mixing, ** then, for large L and small ¢, the random

D The bulk of this work was done during the author’s 1974/75
visit to the Courant Institute of Mathematical Sciences, New
York University,

426 J. Math. Phys. 19(2), February 1978

0022-2488/78/1902-0426$1.00

variable L™ [N(2;L,e) - E{N(Q:L ,¢)}] is, with the excep-
tion of one gingle value of Q, approximately normally
distributed with mean 0, the variance being an explicit
function of §2,¢%/L, and the covariances of the u,’s.
Moreover, an approximation to L'lE{N(Q;L,E)} is pro-
duced which involves only §,¢*, and the covariances of
the u,’s. For the exceptional value of Q a similar inter-
pretation is possible. Our result is incomplete in as

far as no explicit error estimate is given.

The proof (in Sec. 4B) is based on the observation that
the function N can be obtained by solving a simple first-
order initial-value probiem which is of such a nature
that a powerful diffusion limit theorem of Papanicolaou
and Kohler?® (stated in Sec. 3) can be applied. In order
to show this, a slight modification of the phase-space
argument, due to Prifer and commonly used in the
classical Sturm—Liouville theory, is adapted to the
discrete case of coupled harmonic oscillators. This
approach suggests itself when the continuous analog of
the random chain is considered. For this reason the
eigenfrequency problem for the reduced wave equation
in one dimension with random index of refraction is
briefly treated in Secs. 2A and 44. It is interesting to
note that a certain anomaly occurring in the discrete
case [cf. (2.15)] is absent in the continuous analog.

This paper owes much to the work of Kohler and
Papanicolaou'?: in particular, the crucial transformation
(4.8)—(4.9) is merely a modification of (2.15) in Ref.
12,

Throughout this paper R, IR*, IN and IN, denote the
sets of reals, nonnegative reals, nonnegative integers,
and positive integers, respectively. The integer and
fractional parts of x< IR are denoted by £ and ¥
respectively: thus x=%+%, ¥l e N, ¥c[0,1[. For a
nonempty real interval I the symbols L}(J) and AC(I)
denote respectively the sets of all functions I— IR which
are Lebesgue-integrable on I and those which are
absolutely continuous on each compact subinterval of 1.
The space of absolutely convergent series N, —~ R is
denoted by [*(IN,). Phrases such as “almost all” (a.a.)
and “almost everywhere” (a.e.) always refer to the
Lebesgue measure on IR.

Some standard terminology of probability and stochas-
tic processes is used. The symbol E{+} denotes expecta-
tion with respect to the measure of the underlying
probability space, As is customary, the argument
ranging in a probability space of a stochastic process
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is usually suppressed; thus we speak, for instance, of
a stochastic process IN,—IR. The symbol w denotes the
standard process of Brownian motion (Wiener process)
R* = Rwith 0(0)=0, E{w(7)}=0and E{{w(7)]}=r,
TeR*; cf. Ref. 13, p. 7.

2, FORMULATION OF PROBLEMS AND MAIN RESULTS

A. Continuous case: Wave propagation in a random
medium

For each ec [0, 1] we consider a one-dimensional
random medium, occupying the semi-infinite interval
IR*, which is characterized by its index of refraction
n{*, €) relative to a homogeneous medium (corresponding
to e=0). We agsume that »(+,e) has the form

nlx,e)=[1+evx)]' %, xcR*,

where v: IR* ~[-1,1] is a mean 0 stationary stochastic
process.

For w>0, L>90, andec[0,1] let
Ult,xsw,L,e)=e “tulxiw,L,e), t,xcR*,

be a wavefield in the random medium represented by
n(+,€), which satisfies the boundary conditions

U(t,0.w,L,e)=0U(,Liw,L,e)=0, tcIR'.

Then u(+;w,L,¢e) satisfies the reduced wave equation
in one dimension,

' (x) + wl+ev(x)ulx)=0, a.a. xeIR*, (2.1)
and the boundary conditions
u{0)=u(L)=0. (2.2)

In (2.1) ¢ > 0 denotes the phase speed in the unperturbed
homogeneous medium (e= 0) and the primes denote
differentiation with respect to xc R”.

We are interested in the asymptotic behavior, for
large L and small ¢, of the number N(Q;L,e¢) of eigen-
values (eigenfrequencies) w? of (2.1) and (2. 2) with
we[0,R2], Qc R*. For the unperturbed homogeneous
medium N(+;+,0) is a deterministic function, namely
[ef. (2.3) and (2. 4) below]

NQ;L,0)=[QL/cr]", @,LcR*,

whereas for ¢ >0, N(-;»,¢) is an IN-valued stochastic
process defined on R*XIR*. In the following theorem

k plays the role of the wavenumber associated with the
undisturbed homogeneous medium (¢=0), i.e., k=w/c.

THEOREM A: Let v: IR* —[~1,1] be a strict sense
mean 0 stationary measurable stochastic process which
satisfies the regularity and mixing conditions stated
in Sec. 3. Then the stochastic initial-value problem

¥’ (x) =ebr~'v(x) sin®(ryp(x) + kx), a.a. xe R*,
¥(0) =0, (2.3)

kcR*, ¢c[0,1[, has a unique solution ¥ (+,2,¢): R*—~ R
with all its sample functions in AC(IR*). This solution
has the following two properties:

(i) For >0, L>0, andec [0,1],

N(@:L,e)=[QL/cn+ 4 (L, R/ c,e)]" (2.4)
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(ii) For k< IR* and e 0, 1{ let &,(7, k) =P(7/€, k, €),
TcIR*. Then, as e \0, the process ¥, (*,k) converges
weakly to the diffusion process!® (¢, k) given by

W(T,k):£{~ TI?/wR(x) sin(2kx) dx

+ 2[fuR( ©)[2 + cos(ka)]dx]‘/2 w(T)},

o

Tc R, (2.5)

where R denotes the covariance function of v, R(x)
=Cov(y(x),v(0)), x< R*. Moreover, all moments of
¥, (7,k) converge uniformly on compact T intervals to
the corresponding moments of ¥(7,k) and the rate of
convergence is of order ¢.

In particular, for each (7,%)c IR**XIR* the probability
distribution of

WL, kye)+ 2’%2/" R(x) sin(2kx)dx

0

converges weakly, as L/oo and e\O such that L =7> 0,
to the normal distribution with mean 0 and variance

T%°

i ”R(x)[2 + cos(2kx)] dx.

o

B. Discrete case: Chain of random masses

For each e [0,1] we consider a semi-infinite chain
of masses m,(e) >0, je N,, each coupled to its nearest
neighbors by identical elastic springs obeying Hooke’s
law (spring constant /> 0). By U, (¢;€) we denote the
displacement of mass mj(e) from its rest position j at
time ¢t R*. Then the equations of motion (with resting
zeroth particle located at 0) are

m )T, (e} =F1U, 1(tie) =20, (1) + U, (tie)], je NN,
(2.6)

and Uy(t;6)=0 for e R* and e [0,1] ; the dots denote
differentiation with respect to ¢t R*.

For w>0, Le N,, andec [0, 1] let
U,(tiw,L,e)=u,(w,L,e)cos(wt), jeN, tcR,

be a solution of (2. 6) which satisfies the boundary
conditions

Utiw,L,6)=U,,,(t;w,L,e)=0, tcR*.

Then the real numbers « (w,L,e), je N, satisfy the
reduced equations

00 =12 = Pm () fu, +uy0n =0, jeN,. 2.7
and the boundary conditions
Uo=ug,,=0. (2.8)

1t is well known (and it will follow from the proof of
Theorem B below, cf. Sec. 5) that the boundary-value
problem given by (2.7) and (2. 8) has exactly L linearly
independent solutions (normal mode vibrations) which
correspond to L different normal frequencies

0<wy{l, )< e <, (L,e)< 2[f/min{mj(€ )

i=1,...,L{'% (2.9)
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We assume that m () has the form

me)=m[l+en,], je N, e<[0,1], (2.10)
where m > 0 is a constant and u: IN; ~[-1,1] is a mean
0 stationary stochastic process. Then, in view of (2.9),
the normal frequencies w, (L,e) assoc1ated with (2.7) and

(2.8) are random var1ables with

0< wy(L,e)<eee<w (L,e)<2[f m(l —¢)]/2

We are interested in the asymptotic behavior, for large
L and small ¢, of the number N{(Q:L,¢) of eigenvalues
(normal frequencies) w?® of (2.7) and (2. 8) with we [0,8],
0<Q<2(f/m)'/?, when the masses m (e) are given by
(2.10). For the perfect harmonic chain N(-;+,0) is a
deterministic function, namely [cf. (2.11) and (2.12)
below]

N(Q:L,0)=[27(L + Darcsin(@[m/4r]*/?)] ",

Qecl0,2(f/m)??, LeNN,,

whereas for ¢ >0, N{(+;+,¢) is an IN-valued stochastic
process defined on [0,2(f/m)*/? [ xIN,. In the following
theorem k plays the role of the wavenumber
associated with the perfect chain {¢=0), i.e.,

k=2arc sin(w[m/4f]t?).

THEOREM B: Let (A, 7, P) be a probability space and
let pu: IN,xA—~[1,1] be a mean 0 stationary stochastic
process which satisfies the following mixing condition™
the (decreasing) function p:IN,~ [0, 1], defined for & N,
by

p()=sup{|P(A|B) - P(A)|:je N,, Ac 7},,, Be Ft,
P(B)> 0},

has the property that pt/2e ['(IN,); here ]f denotes the
o-subalgebra of 7 generated by the random variables

Kys Myarre- My 1Si<k<. Then the stochastic initial-
value problem
¢ (x) = 2er~ tan(k/2) uy sin®(ry(x) + k%), 1<x#%,
2.11)
#(1) = (

k<[0,7[, e=[0,1[, has a unique solution (-, k,e):
(1, o[ = IR with all its sample functions in AC({1,«=[).
This solution has the following two properties:

(1) For 0< Q=2(f/m)*/?sin(&/2) < 2(f/m)"/?,
LelN,and ec[0,1],

N L, o) =[K@L +1)/7+ 3L +1,K,6)]", 2.12)

provided that K < k,, where k, € ]0,r] is the unique solu-
tion of the equation

(2.13)

(ii) For ke [0, 7] and e]0, 1[ let ¥ (7, k) =9(1/€, &, €),
7c R*. Then, as ¢\0, the process ¥,(, %) converges
weakly to the diffusion process™ ¥{*, k), defined for
T R* by

\Il(T,k):M [— Ttan<]3>§R" sin(2kxn)
“(s52x, 2+ costzen))) " wn)], ker/2,

log(1 + sink) = 2e tan(k/2).

(2.14)
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o am([8s, ] *u(7)

0, s,=0.

|s,/28,), S,>0,

¥ (7, 7/2)= (2.15)
Moreover, all moments of ¥ (7,k) converge uniformly
on compact 7 intervals to the corresponding moments of
¥ (7,k) and the rate of convergence is of order ¢. In
(2.14) R denotes the covariance function of y, i.e.,

R,=R_ =Cov(u,p,)=E{u iHyents

the sums S, and S, appearing in (2.15) are defined by
(2.17) and (2. 18) below and am(: |p), p< [0,1], denotes
the Jacobian amplitude, i.e., the inverse function of the
elliptic integral of the first kind F(+{p). "

,ne IN;

Rewmarks:

1. The result formulated in part (i) of the theorem is
incomplete in as far as (2.12) gives N(*;L,¢) only on the
interval [0,2(f/m)"/*sin(k,/2)]. It could in fact be
improved, but since lim,_, =, it is sufficient for
our needs. (See also Sec. 5.)

2. It follows from the mixing conditions imposed on
L, (3.6) and (3.7), that

N

s_"@R =limN“E{ gfuj]z}e R*, (2.16)
S = ER :limN'lE{[%u Pre R 2.17)
e n==eo 2n Nex j?( 24 ’ :

S,= 22 (- 1)"R,=1limN~ *E{ - PleR*, (2.18)

Naw

n=ww

and therefore, since S+8§,=2S,, either §,/25,¢[0,1] or
§=8,=5,=0. Thus, for S,> 0, the function am(-1S,/2S,):
R —~ R is strictly increasing with range R if $>0 (i.e.,
S,/28,<1) and range | -7/2, n/2[ if S=0 (i.e., 5,/2S,
=1). In particular, for S=0 and §,> 0 the limiting dif-
fusion process ¥(, 7/2) is with probability 1 confined to
the interval ] -4, i[.

3. It follows from Theorem B that for @ =2(f/m)'/?
xsin(K/2}, Ke (0,5, large L € N,, and small ¢> 0,

E{LVN(@;L, )} ="K &n7 tan® (K/2)2 R, sin(2Kn),
-

and that an approximation to the distribution function of
L[N(;L,e) - E{N(Q:L ,e)}] is given by

/\/Ii2 7y tan (K> 27 R {2+ cos(2kn)} , K#7/2,

N[8S,%/L}o L7 F2rL - $,>0, K=1/2,

N[0], §,=0, K=1u/2.

(Here A/ [¢*] denotes the normal distribution with mean
0 and variance o, the symbol - denotes composition of
functions and F(-|p) denotes the elliptic integral of the
first kind'* with domain R for p < [0, 1] and domain
]1-7/2, n/2[ for p=1.) This result is incomplete in as
far as no explicit error estimate is given. A further
deficiency is the nonuniformity of the limit with respect
to K< [0,n].

3. ATHEOREM OF PAPANICOLAOU AND KOHLER
To prove parts (ii) of our theorems we shall use a

diffusion limit theorem of Papanicolaou and Kohler*
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which improves earlier results obtained by

Khas 'minskii® and Papanicolaou and Varadhan.® The
following simplified one-dimensional version of this
theorem is sufficient for our needs.

Let (A,7,P) be a probability space and let v: R*xA
—[-1,1] be a measurable stochastic process with mean
0 and covariance function »:

Efv(x)}=[,v(x)dP=0, xcR’,
r(x,y):E{v(x)v(y)}:fAu(x)u(y)dP, x,ye R*,

For 0< x<y<w=let 7% denote the o-subalgebra of 7
generated by {v(2): x < z< y} and assume that the condi-
tional probabilities relative to 7%, 0< y<e, havea
regular version,' i.e., that there exist functions P :
Ax7~[0,1], 0<y<e, with the properties that P (x,-)
is a probability measure on 7 for each xc A and that

P (-,A) is F,-measurable with Py(-,A):P(A!}'f,) P-
almost surely for each Ac 7. Assume furthermore that
v satisfies the following mixing condition!': the (decreas-
ing) function p:IR*—[0,1], defined for x< R* by

p(x)=sup{|P(4|B) - P(4)|:ye R*,
Ac 7.
has the property that p'/2c LYR*).

Be 75, P(B)>0},

xty?

Let F:IR*XIR ~ R be a bounded Lebesgue-measurable
function with bounded and continuous partial derivatives
up to order four with respect to the second variable,
and assume that there are two bounded functions «:
R*'— R and o: R*— R*, which have four bounded con-
tinous derivatives on IR*, such that

x+ X
sup{ Xa(il))—fx %(y,zl))’/jr(y,z)

X F(z, $)dzdy l:x,Xe R*, ye IR}< %0

(3.1)
and
sup{; X0%) -2 F, ) 76, 2)

X F(z,$)dzdy|: x,Xe R*, e Rp< o, (3.2)

Then, for ec [0, 1[, the stochastic initial-value
problem

%Z‘li(x):eu(x)F(x, ¥(x)), a.a. xe R,
x

$(0)=0

(3.3)

has a unique solution 3, : R* — R with sample paths in
AC(R*). Moreover, the stochastic process ¥, :IR*~ R
defined by

¥ (T =y, (1/®), TcR*, ec]0,1],
converges weakly as ¢\ 0 to the diffusion process?®®
¥:R*— R which is the (unique) solution of the It
equation®?
T
¥(r)= [ a (D)t + [fotk (Ddwlt), e R (3.4)

In addition, there exists a function C: NXR*— R* which
is continuous with respect to its second argument and
is such that

|E{[2, (1]} - E{[%(D)]}] <eCln, 7),
for ne N, 7e IR, and ec 0, 1.

(3.5)
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Remarks:

1. It follows from the definition of » and of p (cf. Ref.
11, Lemma 2, p. 171) that

|7(x,9)| < 20(lx -y]), x,yeR". (3.6)

Furthermore, since p'/?ec L'{IR*) is bounded, nonnega-
tive, and decreasing, it follows that limx_,xpl/z(x):o
and thus that

[ xp()dx < sup{xp'/*(x): x € R} [~ p* /2 (x)dx < 0. (3.7)

2. If the hypotheses (3.1) and (3. 2) are satisfied, then
we have necessarily

a(y) :}if_ng'lf“XaF

ﬁ(y,wf/‘yr(v,z)F(z,w)dzdy (3.8)

and

(@) =Lim2x" [ Fly, ) "7ty 2)F(z , y)dedy

:,}ir:l X‘IE{[f:'xv(y)F(y , P)dyP}= 0, (3.9)
uniformly in (x,¢)c IR*XIR. The last identity follows
from Fubini’s theorem which is applicable under the
stated hypotheses.

4. PROOFS

A. Derivation of Theorem A

By hypothesis all sample functions of the process v
are Lebesgue-measurable functions R* —~[~1,1] and
therefore, for the derivation of the first half of Theorem
A, it suffices to assume that v: R*—~[-1,1]isa
(deterministic) Lebesgue-measurable function. Thus
(2.1) and (2.2) reduce to an ordinary Sturm—Liouville
eigenvalue problem which can be handled by means of
the usual phase space argument. For the sake of
completeness, and also for motivating the derivation of
Theorem B, we briefly cutline this argument.

Equation (2. 1) has a one-dimensional space of every-
where differentiable solutions y: R*— R with »’ ¢ AC(R*)
and z(0)=0. For any such nontrivial solution we have
#*(x) +u’?(x) > 0 for all xc R* and thus, setting
kE=w/c e R*, we can write

ulx) =rl)sing(x), u'(x)=krx)cosplx), xc R,
4.1)

where »: R*— ]J0,»[ and ¢:IR*— IR are both in AC(R*).
[Except for the factor k, (4.1) is the transformation due
to Prifer, which is commonly used in the classical
Sturm—Liouville theory. ] The function ¢ is not uniquely
determined by (4.1); for the sake of convenience we
choose the ¢ with ¢(0)=0. Then, by a straightforward
calculation, it follows from (2.1) and (4. 1) that ¢
satisfies the initial-value problem

o' (x)=k[1 +ev(x)sin®p(x)], a.a. xe R,

5(0)=0, (4.2)

and that y satisfies a similar first-order equation which
involves ¢.

Let ¢(+,k,¢): R*— IR denote the unique solution in
AC(R*) of (4.2), k< R*, ¢<=[0,1]. Differentiating (4.2)
with respect to £ and interchanging the order of
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differentiation of the left-hand side (which is legitimate
in this case), we see that ¢,(+,%,e), the partial deriva-
tive of ¢ with respect to its second argument %, is the
unique solution in AC(IR*) of the linear initial-value
problem

o4(x) =1 +ev(x{sin®¢(x, k,€)
+ksin[2¢(x,k,e)]d,(x)},
$2(0)=0
Consequently, for xe R*, >0 and ec [0,1],
balx, k€)= [T[1 +ev(t) sin®ep(t, & e)]
Xexp{ekf: v(s)sin[2¢(s,k,e)]ds}tdt

a.a. xe R*,

zf" (1 - e timigy = 25 (1 — geee)

0 ek ’

i.e., for x>0 and ¢ [0, 1] the function ¢,(x, « ,¢) is
bounded from below by a function which is positive and
nonintegrable on ]0,«[. Hence, for x>0 and < [0, 1],
the function ¢{x, «,¢} : R*—~ R" is strictly increasing and
its range is IR*. In view of (4. 1) this implies that u{*;w,
L,e) is a nontrivial solution of (2.1) and (2.2) iff ¢(L,
w/c,e)=nr for some ne N, and thus that

N@L,ey=[r"oL,2/c,)]”
for >0, L>0, andec [0, 1].

(4.3)

We now introduce 4 new dependent variable y by
setting

W, ke) =
xeR*, keR',

1 olx,k,e) - kx],
ec(0,1].

In view of (4.2) the function y(+, k,e) is the unique solu-
tion in AC(IR*) of (2.3) and (4. 3) implies (2.4).

(4.4)

We now establish assertion (ii) by showing that the
theorem stated in the previous section applies to (2. 3)
with

rle,9)=R(|x -y]), x,ycR’, (4.5)

and

Flv,d) =n"ksin®(7d + kx), ve R, (4.6)

for kc IR*, With the exception of (3.1} and (3. 2) all
hypotheses of the diffusion limit theorem are evidently
satisfied. To show that (3.1) and (3. 2) also hold, we
must first of all calculate the limits (3. 8) and (3.9) with
the data (4.5) and (4.6). The case 2 =0 is trivial and
we assume that > 0.

xec R*,

Introducing new variables s and ¢ by means of the
formulas

s=v+z+2mp/k, i=vy -z,

using some simple trigonometric identities and applying

Fubini’s theorem, we obtain from (3. 8), (3.9) (4.5),
and (4. 6) that
2x42ry [ k42X =t
aly; 8 {sin(2x¢)
X=w

2x421y [ b+t

-2 s‘m(k[s +£])+ sin{2ks )} dsdt

12 e
_E ] RO) sin@p0)at
7J o
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and
2x 4214 / R¥2 Xt
[2 + cos(2k¢)
25427y /[ ket
+ cos(2ks) —4cos(it)cos(ks)]|dsdt
kZ

=3 R(t [2 +cos(2kt)) dt

for yc R, k>0, and x< IR*. The limits exist by virture

of Lebesgue’s dominated convergence theorem, In fact
we have

I)Qz(zp B) - k;‘[”x sin(2my + 2ky)'[yk(y - z)sin®(g + k2)
X x

Xdzdy‘
k - X .
e —4 R(t)sin(2kt)dt—f RO sin(2kt)
T x 0
25421y [ R+2X =t
- f ’ [sin(e[s + ¢ —%sin(2ks)]ds}dt\
2x42¢9 [ R4t
2 ©
sf—nf |\R()| (¢ +5/2k)dt< =, x,XcR*, velR,
Q

k>0

the last integral is bounded as a consequence of {4.5),
(8.86), and (3. 7). This shows that hypothesis (3.1) is
satisfied, A similar estimate verifies (3.2), and thus
assertion (ii) follows from the diffusion limit theorem.

B. Derivation of Theorem B

Qur starting point is Eq. (2.7) with initial condition
1,=0 and with mj(e) given by (2.10). For the derivation
of the first half of Theorem B it suffices to assume that
u: Ny—[~-1,1] is a numerical sequence; for the sake
of convenience we extend the domain of 4 to IN by set-
ting u,=0.

We try to imitate the derivation of Theorem A, and as
a first step in this direction we replace the angular
frequency w appearing in (2. 7) by the wavenumber %
via the dispersion relation associated with the perfect
chain of harmonic oscillators (6=0):

w=2(f/m)/*sin(k/2), ke[0,n].

Next, adapting a variable transform used by Kohler
and Papanicolaou,’® we replace the uj’s by new vari-
ables A;, B, by means of the equations

(4.7

u, = A, coslkj) + B, sin(kj), jeN, 4.8)
0=[4,,;-A4,]coslkj) + [B,,, - B,]sinlj), jcNN,(4.9)
B,=B,. (4.10)

A simple induction argument shows that for ke 0,7
the u,’s uniquely determine the A4;’s and B,’s for jc N.
Moreover, it follows from (2.7), (2.10), and (4.7)—
(4.10) that the A,’s and B,’s satisfy the difference
equations

Aja=A, +etank/2)u,[4, sin(2kj) + 2B, sin(kj)],
B, =B, —ctan(k/2)u [24; cos®(rj) + B, sin(2kj)],
(4.11)

for j€ N; we recall that u,= p,=0.
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We now define continuous piecewise linear functions
A,B:R'—~ 1R by setting

Alx)=A, + yetan(k/2)u,[A; sin(2kj) + 2B, sin®(j)],
(4.12)
B(x) = B, - xe tan(k/2)u,[24, cos®(kj) + B, sin(2kj)],

for xe [j,j+1[, je N. It follows from (4.11) and (4.12)
that if A(x)=B(x)=0 for some xc R*, then A, =B, =0
for all je IN. Thus for any nontrivial solution {(4,, B,):
je IN} of (4.11) we have

[A(x) coslkx) + Bx) sin(kx) T
+[B(x) cos(kx) — Alx) sin(ex) > 0,

for all y < IR*, and therefore it is legitimate to introduce
new dependent variables »: IR*—~]0,=[ and ¢: R*—~ R
by means of the equations

»(x) sing(x) = Alx) cos(kx) + B(x) sin(kx), x< R,
r(x)coso(x) = - A(x) sin(kx) + B(x) cos(bx), xc IR

(4.13)

clearly, », ¢ € AC(IR*). The function ¢ is not uniquely
determined by (4.13); for the sake of convenience we
choose the ¢ with ¢(0)=0. Then, by a straightforward
calculation, it follows from (4.11)—(4.13) that ¢ satis-
fies the initial-value problem

@)=k +2ctan(k/2) pysint(plx) - %), 0<x#%
6(0)=0. (4.14)

This initial-value problem corresponds to (4.2) and we
can now proceed as we did in Sec. 4A.

Let ¢(s,k,e): IR* ~ IR denote the unique solution in
AC(IR*) of (4.14), < [0,#], e<[0,1], and denote by ¢,
its derivative with respect to £. Then, differentiating
(4.14) with respect to %, interchanging the order of
differentiation on the left-hand side (which is legitimate)
and solving the resulting linear first-order initial-
value problem for ¢,(+,k,c), we arrive at the identity

¢2(x,/e,e):/x (1 +ecos?(k/2)ugsint(o(t, k,e)

o]
. ~,d)
~pt)+ it = Fltyx)
kt) tdt e dt,

for xe R*, k< [0,7], and ec [0, 1]. Here, suppressing
the variables £ and ¢, we have used the abbreviation
Ft,x)=2ctan(/2) [Ty sin(@e(s, k,¢) - 2k5) ds
0 tsxy< oo,
Integrating by parts and recalling the fact that y,=0,
we conclude that for L ¢ IN,,

L.
DL +1,k,6)=1 +,/Ti ef Bl 4 ¢ cos‘z(k/z)uj

+1 v,
Xf; sin®(¢(¢,k,e) — kil it )dt)
L
21+}“ FULLADI _ -2 2
He [1-ccos2(r/2)

X fjj” exp{2e¢ tan(%/2)(¢ - j)}dt)

14 (1 _exp[2tan(e/2)] - 1
sink

L
)J’=1 efthleb>1 ’

provided that k< ]0,%,]. Hence, for L€ N, and e< [0, 1],
the function ¢(L +1,+,¢): [0,7[ ~ R is strictly increas-
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ing on {0,k,]. In view of (4.8) and (4.11)—(4.13) the
sequence {u,(w,L,e): j€ N} is a nontrivial solution of
(2.7) and (2. 8) iff (L +1,%,¢)=nr for some ne IN.
Consequently,

N(QL,e)=[r""¢(L +1,K,)]",

provided that X = 2arc sin(Q[m/47]"/?) 10, &, ].

(4.15)

Again we introduce a new variable § by (4.4). Now it
follows from (4.14) and p,=0 that §(-,%,e) is the unique
solution in AC(IR*) of (2.11), and (4.15) implies (2.12).

We now proceed to establish assertion (ii) by showing
that the diffusion limit theorem applies to (2. 11) with
vix) =iy, x=>1,

r(x,y)=Reyq, x21, 21, (4.16)

and

Flx, ) =27"tan(k/2) sin®(ry + k%), x=1, ypeR.
(4.17)

Without loss of generality we can assume that
A=[~1,1]%o and thus v has the required regularity
property (Ref. 15, p. 363); the process v obviously also
satisfies the mixing condition. Moreover, F given by
(4.17) has the stipulated differentiability and bounded-
ness properties, so that we only have to show that the
limits (3. 8) and (3.9) exist and that they satisfy all
requirements stated in Sec. 3. Again, the case =0 is
trivial and we assume that k< ]0,7[.

In order to calculate the limit (3. 8), we first observe
that a straightforward calculation yields the estimate

x+X
' / sin(2ry + Zky“)/y Ry, 8in’(wd + k2) dzdy
x x
1324 R i=1
~ 27 sin(2ny + 2ki)<—29 sin®(7y + ki) +jERi_,
i=f =%

XSinz(zj)ﬂ+kj)>‘$22%|Ri|<oo, x=1, XeR', ypcR,
=

ke 0,n(; (4.18)
the convergence of the series follows from (4. 16), (3.6),
and the hypothesis that p?/Ze [N(IN,). Next, using some
well-known trigonometric identities,'® we see that for
m,MclN,, tcIR, and k¢ [0,n[,

mM i=1

Z_} sin(2ry + 2ki)<% sin®(zop+ ki) +J§nRi-j sin®(yr + kj))

M
ey
n==M

R.S(|n|, M;m,p,k), (4. 19)

where
Meinl

S(]n] ,M;m,d),k)::4 7?6 Sin(217¢1+2k{;n+,n'+j})

xsin®(ry + k{m +4})
M=Inl
,-Zg [2sin(@ry +2k{m + |n|+j}) —sin(2k|n|)
~ sin(dry+ 2k{2m + |n| +2j})]
:{-—(M- |n]|)sin(k|n|)+ E(|n],M;m,0,k), k#7/2,
~ (M ~ |n|X= D sin(dry) + E(|n|, M;m, ,7/2),

k=1/2, (4.20)

i
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with
C,=sup{|E(n|,Mim,y,k)| inc{0,..., M},

M,meN,, peIR}< oo, (4.21)

It now follows from (3.8), (4.16)—(4.21), and Lebesgue’s
dominated convergence theorem that for yc R,

-7t tanz(k/Z)i{Rn sin(2kn), k#7/2,
alypik) = (4.22)

S, -
——2? sin{dny), k=n/2.

Moreover, it follows from (4.20)—(4.22) that for M,
me N, and e R,

2 M
Ma(zl):k)-—t————-an 2(’;/2) _?;,RMS(M JMim, 0, k)
tan’ =
= anz(::/Z)n_-Z.o |Rn'(n+ck)<°oy kE]OﬂT[, (4.23)

the convergence of the series being a consequence of
(4.16), (3.6), and (3.7). Estimates (4.18) and (4,23)
imply (3.1).

The limit (3.9) is calculated in the same way.
Estimate (4.18) and identity (4.19) are still valid when
sin(2ry + 2k9) and sin(2mp + 2k4) are replaced by
sin®(7y + k) and sin®(7yp + ki) respectively, where now'®
S([nl S M, 0, k)

#in)

=4 23 sin®(rg+ k{m +|n|+5}) sin®my + k{m + 5P

=0
-1

R ow

nt
e [2 ~2cos2ry+ 2k{m + |n]+ 3}

[

- 2cos(2my + 2k{m + jp) + cos(2k | n|)
+cosldmy + 2k{2m + ||+ 27D)]

M—%ﬂ[2+cos(2k\n|)]+E(\n\ Mom, k), k#w/2,
N M[Z‘F( 1){1 + cos(4rp)}] + E( M;
2 - cos TTl!) H ‘n‘s‘ ’m,%
71/2), k=7/2,
and (4.21) still holds. We thus infer from Lebesgue’s
dominated convergence theorem that the limit (3, 9)
exists and that for yc R,

o -
/) 5 o contamm), k#/2,

= 1 (4.24)

. [2s, -5, sin®(2ny)], k=n/2.

An estimate similar to (4.23) finally shows that (3.2)
holds.

The functions (- %) and of« 1) given by (4.22) and
(4.24) respectively have bounded continuous derivatives
of all orders on R, which establishes the applicability
of the diffusion limit theorem. Assertion (ii) thus
follows, ¥ (s ,%) being defined as the solution of (3.4)
with coefficients a(s ;) and o« ;%) given by (4.22) and
(4.24) respectively. For p#7/2 and (&,S,)=(x/2,0)
these coefficients are constant (0 in the second case,
cf. Remark 2 in Sec. 2B), and (2. 14) and the second half
of (2.15) follow. In the case k=7/2 and S, > 0 the trans-
formation technique a) on p. 34 of Ref. 13 yields the

432 J. Math. Phys., Val. 19, No. 2, February 1978

first half of (2.15). [To apply this technique in the case
S=0, observe that then the It6 equation has stationary
points at — ¢ and 4 and that therefore, as a consequence
of the unigqueness of solutions (Ref. 13, p. 40), |¥(-,
7/2)| < % with probability 1. ] Of course, (2.15) can also
be verified a posteriori by calculating the stochastic
differential of ¥(-,7/2) with the aid of It§’s formula
(Ref. 13, p. 24).

5. CONCLUDING REMARKS

The initial value problem (4. 14), or the equivalent
problem (2.11), can be solved analytically for each
sequence {uj:je IN,} in [~ 1,1]. Recalling that we have
to choose p,=0, we see that the solution ¢(-,%,¢)
in AC(R*) of (4. 14) is given by

DU,k e)=kx =)+ ala oG, k,e)]”
+arc cot[cotd(j, k,e) - 2ep (x ~j) tan(e/2)],

for x< [j,j+1)and je N, where ¢(0,%,e)=0 for k[0, 7]
and ec [0,1]. Here, arc cot denotes the principal branch
of the inverse cotangent, which is defined on the
extended real line and whose range is the interval [0, 7],
Moreover, the convention cot(nr)=+ =, nc N, is used.

For integer values of x we obtain the recursion
formula

¢’(1’ k:f):k>
H(L+1,k,e)=k+7 1 (L ,k,e)]"
+arc cot[cotp(L,k,e) - 2ep tan(k/2)]

=k+ ¢(L,k,e)
n J‘co‘»@‘L; Re€)
cotolL,k,e)=26 7 tan(k/2)

(5.1)

11+ dt,

valid for L ¢ N, k< [0,7{, and e< [0,1[. The identities

(5.1) yield the crude estimates

| (L +1,k,6) = GL, kye) k| < minfe,n(1 —[77¢(L,k, )] )}

and (inductively}
E<o(L+1,k,e)<k+L7y

for Le N, k< 10,a[, and e [0, 1[.

(5.2)

In deriving (4.14), (5.1) and (5. 2) we did not use the
fact that u e [-1,1]. Thus we can choose all u > 0 and
e=1, which corresponds to a chain of harmonic oscil-
lators with (deterministic) masses m, =m(l+ H,)Z m>0,
je N,. Setting ¢, ()= (L +1,k,1), we can rewrite
(5.1) as

bolk) =k,
o R =k Taln o, 4@)]"
+are cot[cote, (k) —2u, tan(k/2)]

cotoy _1(k) 27-1
=p+ + 1+
k+ ¢y k) fmw_lm_hﬁmk/m[ et

(5.3)

L e INg,

for k< [0,7{, where we adopt the same conventions as
above. It now follows from (4.14) and (5. 2) that ¢, :
[o,7[ =[0,(L + 1)g] is strictly increasing and that

(L+ k<o, ®RI<E+L7r, kel0,q], (5.4)
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for each L € IN,; in particular, lim,_ ¢, (B=(L+1)r. In
view of (4. 8) and (4.11)~(4, 13) this proves (2.9). More
specifically, the normal frequencies wj(L) of (2.7) and
(2.8) {with e=1 and m;=m(l+u,)>m>0]are given by

w, (L)=2(f/m)/?sin(¢;'(m)/2), j=1,2...,L, Le 12_)0,5)

and [r7*¢, (#)]" is the number of w,(L)’s in [0,2(f/m)"/?
xsin{z/2)).
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Explicit results for the quantum-mechanical energy states
basic to a finite square-well potential
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The theory of complex variables is used to establish explicit expressions for the discrete energy states

relevant to a square-well potential.

INTRODUCTION

As one of the first examples of the principles of quan-
tum mechanics, Schiff! solves the Schrodinger equation
for a square~-well potential,

4
=5 Tt Ulx) + V{x)U{x) =EU(x}, 1)
where
Vix)=0, xc(-a,a), (2a)
and
Vix)=V,, |x|>a, (2b)

to find the discrete energy levels. Thus, on establishing
the solution to Eq. (1), subject to Ulx) and U’{x) being
continuous at x =+a, Schiff! finds that the bound states
(E <V,) can be expressed as

n? .
EJ':W 2]" .731,2,3,"-972’ (3)

where £; denotes one of the n positive solutions of
ttant = (A% - £)1/2) j odd, (42)
Ecotg=—~ (A%~ )2,

where A € (0,27/2) is given by

j even, (4b)

A _—:—;22: VomvV,. {5)

Here we wish to report explicit solutions of Eqs. (4)
that yield exact closed-form results for the discrete
energy levels,

ANALYSIS

In order to relate the roots of Eqs. (4) to the zeros
of a sectionally analytic function, we wish to consider

1
Alz) =-iAz +D(z)(kni——:lz— . udfz)’ 6)

where k is a constant and
D(Z):(ZZ_I)IM. (7)

Here we use a branch of the square root function such
that Dz} =— D(~ z) is analytic in the complex plane cut
from —1 to 1 along the real axis and argD(z) e (- =, 7).
We conclude that A,(z) is analytic in the complex plane
cut from —~ 1 to 1 along the real axis. Further, we can
use the argument principle’ to deduce that A,(z) has one
zero in the finite cut plane for 2< (- 3,3), that A,(z) has
two zeros for >3 and that A,{(z) has no zeros for k
<-3,
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We first consider k =0 and note® that

Do) g xoa), ®)
Z - ZO

where X,(z) is a canonical solution of the Riemann prob-
lem* defined by

Xa(T) :GO(T)XG(T), TE (" 1, 1)' (9)
Here K; is a constant to be determined and

Y

GO(T) Ag(T) s

(10)

where the + superscripts are used to denote the limiting
values as z approaches the branch cut [-1,1] from
above and below. The Riemann problem defined by Eq.
(9) can be solved, as discussed by Muskhelishvili, 4o
yield

1
Xo(z):exp[ﬁ j:! logGo(‘r)?({_zz—], (11)

where we use the log function such that arglogGy(7)
varies continuously from 0 at 7=- 1. If we now inves-
tigate Eq. (8) as Iz {— = we find that K;=-iA and that
z2y=~— 1y, Where

1 1
3’0:Z"27rLcs (12)

with, in general,

L,= fol In({& ~ BY?72(1 = £2) +[(1 = £)1/% tanh™1 (¢)

- APY/{G + RPN - ) + (1 - )12 tanh™!(7)
+AtPPYat. 13}

It is now apparent that
af 1
‘El =Tan - (1 4)
Yo

is the first of the desired solutions of Eqs. (4).
For k> 3%, we can readily generalize Eq. (8) to obtain

A 2)

@ —221)@~2p3) =ik - A)X,(z), (15)
Ry »

where 2,4 and z,,, are the two zeros of A, (z). Here we
write a canonical solution of the Riemann problem de-
fined by the k>3 generalization of Eq. (9) as

1
Xk(z):;—_L-i exp[—z-%j:l 108G, (1) =2 ] (16)

T—2
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Here

AxT)

Gk(T)— A;(T) y (17)
and again we use logG,(7) such that arglogG,(T) varies
continuously from 0 at 7=-—1. With logG,(T) so defined,
we deduce, for #>3, that logG,(1)=2wi; and thus, as
discussed by Muskhelishvili,* the factor (z — 1) ap-
pears explicitly in Eq. (16) to insure that X,(z) does not
vanish at z =1. We can now investigate Eq. (15) for
large Iz | to deduce that z, ;== iy, and 2, o == y,,,,
where

yk,lsz+(B?e+Wk)1/Z (18a)
and
Va2 =By= (BE + W)/, (18b)
Here
1 1 1
Bt (- ) 9
and
1 1 kT 1
WF(m)(ﬁLk*?)-mLi'”Mk- (20)
In addition,
1 1
My == f to(t) dt, 21)
0

where

O(t) =tan"((7(1 - £?) tanh™(#) ~ 2kAt7(1 - $2)1/2])/
{G - )t (1= - (1- O)[tanh @) +A4%%]),  (22)

with ©(0) =7. If we now let j =2k +1, then the lastn -2
desired positive solutions of Egs. (4) can be expressed
as

gj:krr+Tan'1()71—1), j=3,4,5,...,n. (23)
kl

1

The case & =3 requires special attention since the cor-

responding G,(T) vanishes on the cut. We thus find it
convenient to introduce

9(2):/\1/2(2)1\1/2(—2) (24)
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and consider the Riemann problem defined by

v =5

Y (r), Te(~1,1). 25)

We find we can write a canonical solution here as

1
re)=riyent [ o0rL] (26)

z-=1 4

where

7T(1—t2)1/2 ) ” (27)

o(t) =tan™ (_ (1= tanh1(2) - At

with ¢(= 1)=0., Thus, since Q(z) has a zero at the ori-
gin and two additional zeros, *z,,,, we can write

Q(z) 7 2
@21,y :(E—A) Y{(z), (28)

and let [z [ = < to deduce that z,,9y=+1%y,,,, where
2(m—A) 2[1 4 \1/2
LAVEES oy i . t¢(t)dt+m . (29)

The positive solution of Eqs. (4) corresponding to j =2
thus is given by

_r a1
gz_z + Tan (3’1/2)' (30)
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Classical gauge fields are envisaged in the context of fibre bundle theory. General symmetry conditions
are found which lead to an Abelian holonomy group. This, in turn, has important consequences on the
solutions of the gauge field equations: Symmetric solutions have unphysical properties. Non-Abelian

holonomy groups are thus needed.

1. INTRODUCTION

Recently, one has witnessed a great interest in the
classical solutions to the non-Abelian gauge field equa-
tions, Powerful methods for finding the solutions of
such nonlinear field equations are still lacking, The
purpose of this paper is an attempt to get information
on the solutions without solving the equations,

We take the point of view recently advocated by Wu
and Yang' (preceded by many others) and consider the
gauge fields as connections on a fibre bundle. The field
strength tensor operator ¢,, is then an internal curva-
ture tensor. As emphasized by Loos, ?® important in-
formation on the properties of the gauge fields can be
obtained from an investigation of the holonomy group of
the fibre bundle as opposed to considering the struc-
tural (or gauge) group alone: Loos? has shown that
spherically symmetric analytic solutions of the point
charge Yang—Mills* equations have an Abelian internal
holonomy group and Uzes® proved that for gauge fields
with an Abelian internal holonomy group, the Yang—
Mills equations and the Bianchi identities reduce to
Maxwell’s equations (possibly with magnetic monopoles).
These two results by themselves indicate the relevance
of the question as to whether the internal holonomy
group is Abelian or not. There is another reason for
studying this point.

Recently, Eguchi® has presented a classification of
the unquantized Yang —Mills fields for the SU(2) gauge
group. The differential properties of the Yang —Mills
fields are given by the holonomy group. In his Table I,
one notices immediately that there are only two classes
in the holonomy group column: an Abelian holonomy
group and a three-dimensional one. Thus it becomes im-
portant to find criteria for an Abelian holonomy group.
(His claim that the Yang—Mills fields produced by
classical point charges lead necessarily to an Abelian
holonomy group should be taken with caution: Loos’ has
explicitly given a solution for a point charge with a non-
Abelian holonomy group.)

Our task will be to show that very general symmetry
conditions imposed on the field strengths lead to an
Abelian internal holonomy group. Our results are valid
for three cases:

(a) the sourceless Yang —Mills field,

a)gupported by Bundesministerium flir Forschung und
Technologie.
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(b) the source is C= and vanishes in some small
domain,

(c) a special case when the current density is propor-
tional to a given component of the field strength,

Furthermore, we explicitly show in the model used
by ’t Hooft® to obtain his monopole solution that for
Wu-Yang’s® solution, the holonomy group is Abelian.
On the other hand, Prasad and Sommerfield’s’® solution
leads to a non-Abelian holonomy group as it does not
satisfy our symmetry conditions. The presence of
scalar fields seems to be important in this regard.

The paper is organized as follows. In Sec. 2, we
introduce some definitions and our notation. Section 3
analyzes the conditions to obtain an Abelian holonomy
group; it is extended in Sec. 4 in which symmetry con-
ditions are provided. Finally Sec. 5 is devoted to exam-
ples using 't Hooft’s® Langrangian. It is followed by a
short conclusion.

2. SOME DEFINITIONS AND NOTATION

The gauge group will be denoted by G and its elements
by g¢. The generators L, of the Lie algebra L of the
group G allow an expansion of the field strength tensor
operator &, as follows (a=1,...,n, where n is the
dimension of the algebra):

(buv:FugLa' (1)
One has a similar expansion for the gauge fields,

r,=B'L,. (2)
The parameters ', determine an internal linear con-
nection and we obtain

(I)uuzauru_auru,_ie[r‘u‘irv|' (3)
The covariant derivative of a covariant internal vector
A® is given by

V,A"=3,A"—ie(T,), A, (4)
The covariant derivative of an internal linear operator
§2 is given by

v,Q2=2,Q -ie[l,, Q). (5)

After these preliminaries, let us introduce the internal
holonomy group. '* We first construct a fibre bundle £
such that the base space will be the (flat) Minkowski
space M, or some submanifold in that space. We can
think of the fibre F as a vector space of the internal
degree of freedom, It is helpful to have Fig. 1 in mind.
Furthermore, the fibre F and the group G are related
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FIG. 1. The fibre bundle E(M,G,F). L is the Lie algebra and
e ig the identity element,

by a set of differentiable homeomorphisms. Any path
in the fibre bundle E can be projected onto the
Minkowski space. A vertical displacement (along the
fibre) is achieved by an element of the gauge group,

2= zg7t (6)

where 2z and z’ are points in the space E belonging to the
same fibre F. Given a point z of E, the holonomy group
for a given connection I', at x; is the set of elements g
of the gauge group G such that internal vectors at z can
be transported to the point zg™ in a parallel transfer.

If we choose the transfer route to be an infinitesimal
parallelogram, it is simple to show that locally, the
corresponding element 7 of the holonomy group will
reduce to

h:1+d>wdS‘“’, (7)

where dS"" is the area of the parallelogram in
Minkowski space. One notices immediately that % is
nothing else than Wu—Yang’s* phase factor for an in-
finitesimal parallelogram. We thus see that at least
some generators of the internal holonomy group are
given by the components of the curvature tensor.

We take the basis manifold to be simply connected
and our approach becomes natural if we consider the
restricted holonomy group H%(x,) at x,. It is defined
as the set of elements g of the structure group such that
z and zg™' are connected by a horizontal path whose
projection on the basis manifold is a closed loop homo-
topic to zero. Introduce a sequence of shrinking Lie
groups H(U,,x,), i=1,2, -+, where U, is a family of
connected open sets such that U, DU, >+ -and NTU,; = x,.
The intersection of these Lie groups is itself a Lie group
H*(x,) called the local holonomy group at x,. The in-
finitesimal holonomy group H'(x,) is defined in the case
the basis manifold and the connection are of class C~.

It is obtained by giving its Lie algebra and it corre-
sponds to the connected piece containing the identity.
We have

H'(x,) CH*(x,) CH(M, x,).

We base our investigation on the fundamental result
(proven by Nijenhuis'?) that H'(x,) is completely deter -
mined by the curvature tensor and its covariant deriva-
tives., We seek information on H°(M, x,) by looking at
H'(x,) alone. Some results are available; although most
of them have been proved in detail for affine connec-
tions, they can be extended to general linear fibre bun-
dles without any serious modification., Our first re-
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quirement will be that for each point in Minkowski
space, the local and infinitesimal holonomy groups
coincide. Theorem 6 of Nijenhuis!? then implies

HM,x,)=H*x,)=H'(x,).

It is therefore equivalent to study the infinitesimal
holonomy group alone. Symmetry conditions will con-
strain the elements of the infinitesimal holonomy group
algebra and the restricted holonomy group H° is deter-
mined in one point. One then uses the fact that the
restricted holonomy groups for different points are
isomorphic.

In non-Abelian gauge field theories, semisimple or
direct products of semisimple gauge groups are favored
in the construction of models in regard with the
“naturalness” of Cabibbo universality and the quantiza-
tion of charge.'® Holonomy groups are subgroups of the
structure group and we want to consider Abelian holono-
my groups. This makes the study of holonomy groups
more difficult: Their Killing form is nonregular and the
adjoint representation of the Lie algebra is not faithful.
Treat!® obtains a short-range pointlike solution with the
help of a nonsemisimple holonomy group which is also
non-Abelian. In the conclusion of the same paper he is
led to assert that, as a result of the nonsemisimple
character of the holonomy group, there are nonvanishing
components of the field which do not contribute to the
energy density. This ghostlike behavior is, in our case,
a direct consequence of the Abelian property of H°. This
comes about because, for non-Abelian gauge fields, the
energy density involves the Killing form. (We exclude
pure electromagnetism from our considerations.) This
emphasizes another purpose of this investigation:
Symmetric solutions for the curvature tensor should be
avoided because they have components which do not
contribute to the energy density.

3. CONDITIONS

We want to know under which conditions one has an
Abelian holonomy group. A first step in that direction is
to analyze the commutator of the field strengths

[¢uv7fblp]:0' (8)

The meaning of relation (8) is clear: It is the integra-
bility condition for the quantities &,,. Consider formula
(5) and take the covariant derivative on both sides,

V)\VUQ: aAaUQ - [a)\ro’ Q] - [ro’ aXQ]
-[5,8.2]+[T,, (T,,2]].
Alternate,
(MaVe = V.= [2,8,,]. 9)

Choose Q to be the quantity ®,, and we obtain a general
condition for the commutator,

(Vuvu "Vvvu.)q)kp: [¢hp!¢uu]:0' (10)
The first derivatives of the field strengths are not
independent but satisfy the Bianchi identities

V,®,+V, 3, +9,&,,=0. (11)

Furthermore, for a flat Minkowski space, one can
easily show that
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FIG. 2. The Bianchi identities,

v, Vv, @, =0, (12)

We will make use of the Bianchi identities but for our
purpose they are redundant. For instance, if two indices
are the same in Eq. (11), we get a trivial identity,

qu)uxzvuéux' (13)

Simple combinatorial considerations show that one ob-
tains only four nontrivial independent identities. We
found it useful to express them by four triangles as
follows (see Fig, 2):

(1) the indices a,b,c,d=1,2,3,4 are all different.

(2) the indices are to be read clockwise. The index
in the center of the triangle is just a label and should
only be considered to identify one of the four nontrivial
identities.

(3) each vertex with index a is the covariant deriva-
tive V.

(4) each line joining the vertices a and b is ®,, (a
missing line between vertices @ and b means &_,,=0),

a

L’Ab : VarI)bc + Vbq)ca + ch)ab = O’ (14)
CZ—b PVt YV, 2= 0, (15)
e— 9§, _=0. (16)

Let us concentrate on the commutator (8). The quanti-
ties ¢,, are antisymmetric as well as the commutator
of any two such quantities. It is easy to see that one can
form 15 independent commutators. Since each compo-
nent of &,, enters in five commutators (there are six
independent components), each time one component
vanishes, the number of surviving commutators will
obey the following rule: If the number of vanishing ¢, ’s
is n (0 <n <5), the number of surviving commutators is

3(5 —n)(6 —n). (17

We also know that the commutators are not yet fully
independent because they are related via the Bianchi
identities as follows: The integrability condition (10)
tells us that conditions on the commutators are condi-
tions on the covariant derivatives of the field strengths.
On the other hand, the vanishing of a given component of
&, , will bear on the Bianchi identities. If we write out
the four possible triangles, we see that each line
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appears twice. A given component will thus vanish in
two Bianchi identities. This shows an important rela-
tionship between the field strengths and their first
covariant derivatives. In physical cases, we will al-
ways have the following form for nonvanishing covariant
derivatives envisaged from symmetry considerations:

V@, =M D,., (18)

where M%, is some function of the coordinates in
Minkowski space (no summation over repeated indices
is intended). This will be shown in the next section, It
is then sufficient to consider only the field strengths
and their first covariant derivatives to obtain the com-
plete Lie algebra. It may happen that M} vanishes and
formula (18) reduces to formula (18).

4. SYMMETRY

We shall assume that an event in Minkowski space
is localized by four curvilinear orthogonal coordinates:
£y, &5, &5, &;. These coordinates will be accompanied
by scale factors y, such that a line element will be given
by )
Al =vides -3 vidEs. (19)
n=1

Let us be more precise as to what we mean by sym-
metry. We want to consider symmetries which give us
conditions on the components of ¢, and their first
covariant derivatives such that the commutators vanish.
We define symmetry for two-dimensional C* manifolds
in Minkowski space. These surfaces are to be covered
by two orthogonal coordinates, for each set of values of
the other two coordinates. We need a two-dimensional
shell to define nontrivial field strengths,

®, , =%, (a,0=0,1,2,3). (20)

¢ats
We introduce some auxiliary symmetry parameters

«, B, ¥, - - corresponding to symmetry operations on a
two-dimensional shell. One may distinguish two types
of symmetries:

(a) symmetries aboul a fixed point (isolvopy): one is
at a point on the surface and the symmetry parameter
is an angle « specifying the orientation of a tangent
vector with respect to the local frame. For instance,
the surface element |d{ A d¢,| is independent of o pro-
vided the vectors d¢; do not change their length. If we
want an element /; of the holonomy group to have the
same symmetry property, it must satisfy

= j-o. (21)
o
We will soon see that this leads to formula (18) with
M .= 0 for four components of the curvature tensor.

(b) displacement symmeltries (homogeneilv): in this
case, the symmetry parameters are to be identified with
the coordinates themselves. The condition that the
holonomy group element does not change along the
coordinate £  is

VA®,,dS?) =0, (22)
Consider a small piece of the two-dimensional shell,

AS® =y, vy, AL N AL, (23)
One finds that
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2.85%={y y;'0 (v,y,)]A8%. (24)
Condition (22) gives us
ch)ab: "q)ab[y;lyl_zlac(ya.yb)]' (25)

This is exactly the form presented in formula (18),
Actually one should consider the effects of symmetry on
higher covariant derivatives of the field strength as
well but condition (25) is sufficient to close the Lie
algebra and it has direct geometrical significance. Let
us define

M= =391 0 (3,9 5)s (26)
such that formula (25) becomes
ch’ab:MZo‘I’ab“ (27)

Substitute (27) into the integrability condition (10). This
gives us

(9,M¢, ~3 . M%)e,,=0. (28)

This equation is always satisifed if (27) is true. We thus
get a sufficient condition in the form of a theorem.

Theovem: If all the covariant derivatives V & , are
of the form M¢, ®,, with

M= =991 0 (3, ,)

the holonomy group is Abelian and perfect. ®

We remark that higher covariant derivatives applied
to the form (27) give us
ViV = (VaM3)®, + MGV, 8y (29)

c ab

Since V,M{, is a commuting number one needs only to
consider the commutators of the field strengths and
their first covariant derivatives; we have shown that
those quantities commute, The argument can be easily
generalized to the covariant derivative of any order by
induction. Thus the whole algebra is commutative and
the theorem is proved. It requires all the components of
@, to satisfy equations (26) and (27). In that case, all
the holonomy group elements are invariant under
parallel transfer along any of the coordinates £,

Can we obtain a weaker condition? Consider a sym-
metry shell covered by a mesh of curvilinear coordi-
nates &, and £;. Define two vectors, one of which dx¥,
is tangent to the shell. This is a trivial generalization
of Loos® ansatz,

dx{=(0,0, y,d¢,, y,di,),
dxh =(v,d&,, v,dE,,0,0). (30)
Introduce a symmetry parameter o with the help of
a tangent vector as follows:
dz* =(0, 0, cosadz, sinadz), (31)

where a is the angle between dz* and the local frame.
Comparing (30) and (31) we have

y,di,=cosadz, y,di,=sinadz. (32)
The holonomy group element generated by ¢, is
D, dS* = (D,,v,dE,+ B,,v,dE,) cosadz
+(Pyov0dEy+ $5,9,dE,) sinadz. (33)
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Symmetry condition (21) and the fact that d¢, and d§, are
linearly independent implies that

Py0= Py =P30=P5,=0. (34)

This also satisfies equation (18) trivially and using (15)
we find that only one independent commutator involving
the field strengths alone survives, It is

[q’ou (I)za]: (V2V3 - V3V2) P (35)

Two of the four nontrivial Bianchi identities reduce to
the form (16),

(36)

The commutator (35) vanishes. Using symmetry condi-
tion (a) only, [Eq. (21)] we are able to conclude that the
internal curvature tensor operator spans an Abelian
subalgebra of the holonomy group algebra. The algebra
is perfect. Only &,, and ®,, are nonzero among the six
independent ¢, ,’s; we have just shown they commute.
Symmetry condition (21) is very stringent indeed. Let
us use symmetry condition (b) for the coordinates £,
and &,

Vb=V, = 0.

Vz‘bzs:Mga Py V3<I>23:1WSS<P23. (37)

We realize that those first derivatives are also mem-
bers of the perfect Abelian subalgebra. We are thus

left with two elements of the holonomy group, V,®,, and
V,®,,. Taking higher covariant derjvatives of these
elements will generate many terms. Using the equations
of motion for the Yang—Mills fields one defines cur-
rents as follows:

vud‘)uv:‘]u’ (38)
We end up with
Voo =dys Vo= ~dg. (39)

At this point, one has to make some assumptions for
Jy and J,. We want to consider three cases:

(1) J,=J,=0 everywhere (sourceless Yang—Mills

field).
(2) J, and J, are C” and vanish in some small
region.
(3) J;=M;®,, with i=0,1, (40)

Consider that the surface is chosen in the region
where the sources vanish or satisfy Eq. (40). The
holonomy group is then Abelian and perfect at least at
one point. Using the isomorphism of holonomy groups
at different points in the fibre bundle, we are allowed
to conclude that the holonomy group is Abelian and
perfect everywhere, Let us summarize this in a theo-
rem which is a generalization of Loos’* resuit.

Theorem: If there exists a two-dimensional symmetry
manifold in Minkowski space on which the internal
curvature satisfies the symmetry conditions (21) and
(37), and if there is a region where the current densi-
ties J, and J, satisfy conditions (40), the internal
(restricted) holonomy group algebra is Abelian and
perfect.

5. EXAMPLES

Let us consider the following Lagrangian:
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(41)

It leads to 't Hooft’s® monopole solution. Symmetry con-
dition {21) implies that four among the six independent
components of ®,, must vanish, We now want to investi-
gate two types of solutions when only three components
are nonvanishing,

L[=~3F,0F,;~39,0°Y,0%+ p%02 - ol

(i) Let us take Wu—Yang's solution® as it is presented
in Hsu.* The gauge group is SU(2). We want to show
that the holonomy group is still Abelian and perfect.
The equations of motion are given by:

V(l(buv: *ZQ[QDivv(P]’ (42)
VaVa9) + G’ - 3209 =0, (43)
$,,=08,T,~-8I, -ie[l',,T,] (44)
The solution we consider is given by
. A
ra:Z[R’Lale',;.? (45)
with
R=v,L,, T;=0, A=1lor 2,
(46)

(L,, L,]=1i€.L,, a,b,c=1,2,3,

This solution satisfies the equations of motion except at
the origin. With this ansatiz it is easy to show that

24 7 ¥
@ = 7([%, Lyt 73 {L,, R} *;,—3 [L,s R]
A
"'2—772[[114: RJ, [Lna R”)' (47}
Furthermore one has,
[[Lu R]’ [Lz’ R]]:Z-VSR)
[[Lz: R], [L3, R”: ir, R, (48)
[[L3> R], [Lu RH:i'VzR)
and finally,
24
b=~ (1-A/2)Re,, 7. (49)

Obviously the holonomy group is Abelian if it is
perfect. The algebra is reduced to a one-dimensional
vector space pointing in the direction of R. Let us see
that it is perfect indeed. An explicit calculation (with
A=1, the other case being trivial), shows that

€ap 3v,7
Vu’:bab: - ea,rf! (éuc‘— :2 C>R'

Higher covariant derivatives will also point in the
direction of R as one can convince oneself that VR also
points in the same direction. An inductive argument
can be used to make the final steps rigorous,

(ii) Let us now consider!” the solution of Prasad and
Sommerfield. ® Here also the solution does not satisfy
our symmetry condition (21) because three of the & ,,’s
are nonvanishing, We want to show that the presence
of scalar fields plays a crucial role in this case, in
determining whether the holonomy group is Abelian or
not.

The solution we envisage is
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. K(r) -1
Pu:Z[Lu’R} o ) (50)
where
K(r)= CreschCr, (51)
H(v)=CwvcothCyr -1, (562)

Following essentially the same steps as in our analy-
sis of the Wu—Yang’s solution, we obtain an expression
for three nonvanishing components of the field strength,

Cabc¥c 2
o= R(E(H() + (K*v) - 1))

ab "

_ el pipin.
ey

(53)

The scalar field solution of Prasad and Sommertield is
given by

H(v)

o (54)

¢ =7

where #° is a unit vector. The solution (53) is non-
Abelian due only to the presence of the second term in
the right-hand side. Comparing with Eq. (54) we notice
that the holonomy group would be Abelian if the scalar
field vanished. The function »"* H(7») vanishes for »— 0
but that limit is not defined for the unit vector 72,
Similarly, the scalar field is responsible for the source
term [see conditions (40)],

J,=V@ = —~——EM2:;L6 K@) H (7).

(55)

It would be interesting to investigate a case in which
the scalar field vanishes outside =0, to cast some
light on the problem, but exact solutions to nonlinear
field equations are scarce, We plan to consider the
SU(3) solution of Marciano and Pagels'® without scalar
fields.

6. CONCLUSION

Our conception of symmetry is more concerned with
the geometrical properties of the field strengths than
with their actual form, and to whether they are sepa-
rable into angular and radial variables, for instance.
As a consequence of our definition of symmetry, four
independent & ,, vanish. This in turn leads to an Abelian
holonomy group for appropriate sources. It may happen
that the holonomy group is still Abelian otherwise, as
in the Wu—~Yang solution (one is in an Abelian gauge).
This shows that our conditions are sufficient but, possi-
bly, not necessary. The main result of this investiga-
tion is a generalization of Loos’? result., He showed that
every spherically symmetric internal holonomy group
with at least one source-free region is Abelian, His
proof can be extended and we are able to conclude that
similar results hold if the sphere is deformed into a
two-dimensional surface as long as it is a simply con-
nected C” manifold, admitting orthogonal coordinates.
Uzes’® theorem then implies that short-range compo-
nents in Yang-—Mills fields can only appear if it is im-
possible to find a two-dimensional symmetry as defined
in the text. This means that spherical, cylindrical,
ellipsoidal symmetric solutions, plane waves and the
like should not be considered for that purpose. Plane
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symmetry has also been considered by Uzes. His re-
sults agree with our general conclusion.
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Static and nonstatic vacuum solutions of Brans-Dicke field equations are derived. For this purpose, a
new and convenient technique is proposed. Results are applied to some known solutions.

1. INTRODUCTION

Consideration of the gravitation field via the general
theory of relativity proposed by Einstein has been cus-
tomary almost from the dawn of the twentieth century.
In this theory Einstein has introduced the principle of
geometrization in physics. The general theory, in fact,
succeeds in geometrizing the phenomenon of gravitation
and in identifying the metric tensor of a Riemanian
space~time with the gravitational potential but this
theory lacks explanation of all aspects of Mach’s prin-
ciple, therefore, we start our study with the Brans—
Dicke' theory of gravitation which incorporates the idea
of Mack’s principle to some extent. Jordan? has also
made attempts in this direction but his theory lacked
physical validity owing to nonconservation of the ener-
gy~—momentum tensor and the aspect of mass creation.

In this paper, we have obtained some solutions of
Brans—Dicke field equations by transforming them into
Einstein-like field equations. Recently, Singh® has ob-
tained some static solutions of the scalar—tensor theory
of Sen and Dunn? by a similar technique but this theory
has a negative point that the principle of mass energy
conservation is violated here also. Therefore, on physi-
cal grounds, the scalar—tensor theory also does not
arouse our interest. The importance of this paper is
that we have obtained both static and nonstatic solutions
of the more generalized theory of gravitational fields
(Brans—~—Dicke theory).

In Sec. 2, we have given the Brans—Dicke field equa-
tions. In Sec. 3, static solution of these field equations
are derived. In Sec. 4, resulis corresponding to some
well-known solutions of Einstein theory have been ob~
tained for the Brans—Dicke theory. In Sec. 5, we have
gotten a nonstatic solution of the field equations obtained
in Sec. 2. The last section contains some concluding
remarks.,

2. BRANS-DICKE FIELD EQUATION
The field equations of the Brans—Dicke theory are
Ryj= %8R =(w/0*)b,: &, 5~ 3815 0,2 ")
+ 7 Py5 = gusF) + (BT/coTT (I_}]

Hence the field equations (6) become

and
(3 +2w)¢¥=B1/cHT, (2)

where R;; is the Ricci tensor, R is the scalar curva-
ture, g;; is the matric tensor, ¢ is the scalar field,
T,;; is the energy—momentum tensor, and w is the
coupling constant,

For this purpose, we consider an empty space for
which T, =0, Therefore, in the case of the vacuum
field, the Brans—Dicke field equations take the form

Rij=(w/¢M¢,10,;+ (0, /), (3)
and

$h=0 (w#=3). @)

The substitution of

¢ =exp(r), 5)
makes (3) more convenient and we obtain

Ry;={w+1 ;A ;+2;;. (8)
Let us consider a nonstatic line element

ds?® = exp(20) dt? + exp{~- 2(1 + E)U|(y, dx° dx®), )

where U is a function of all the four coordinates
(xy, x9, x4, t), where a,b,c, +++ run from 1 to 3. Here
¥,, plays the role of the metric tensor in three-dimen-
sional space and satisfies y,,y*°=245;. £ is an arbitrary
constant,

Computing the component of Ricci tensor, we have
Ry=P,~(E+1)y,US—EU,,+ (2~ EVU U,

+E(E + 1)y v°U U ,+ (BE +4)E +1)

yCad
X exp|— 2(E +2)U)U% - (E = 1) exp|- 2(E +2)U}y,,U, 44,
8
Ry =expl2(E + 2)U(U¢,. ~ Ev**U, U ,) ®)
+3(E+I)E+2UH = 3(E+1U, 9)
Ry =2(E+1)(U U ,~ U, ), (10)

where P, is the Ricci tensor formed by the metric ten-
sSor v, and covariant derivatives are also formed with
respect to v, Ry is the Ricei tensor used earlier.

(Puo— (E + 1)y Us.~ EUp, + (2 —EZ)U,QU'b—i-E(E + Dy py®U, U

17 yd

+(3E +4)(E +1) exp[ - 2(E + 2)U)y,, U?,~(E +1) expl~ 2(E +2)U] vV, 44

=W+, Fhgy+ B+ U+ 2,0, = V¥ U Ay
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)= (E +1) exp{~ 2(E + 2)Ulv1, 41U, 45 11)
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expl2(E + 2)U)(US, = Ey*U, U, ;) +3(E + 1)(E +2)U% - 3(E + 1)U, 4

= ( + 1%y + exp[2(E + 2)ly°\, U, ;= U, g\, 4 + 2, 44,

»

2E+1HU, U, 4= U ) =(w+1 2+ 2 4 HE+DU 2 4= U, 2 4.

167 ¢

3. STATIC SOLUTIONS OF THE BRANS-DICKE
FIELD EQUATIONS

For static solutions, the function U in the time ele-
ment (7) will be independent of time coordinate ¢ and
hence field equations (11), (12), and (13) are reduced
to

Po~ (E +1)y,Uf .= EUyy+ (2= EVU U,
+E(E + l)y,,,,y"“U,cU,d

=W+ DA A 5+ 2y

H(E+1) U+ 23U, g = Yap?*U o X g (14)

U¢,~ Ey®U, U, =Y"U, X\ g (15)
Now we assume that A and U are related functionally by

A=-EU, (16)
which transforms the field equations (14) and (15) into

P, +2F U, ,=0, (17)
where

F-1+E-E'w/2, (18)
and

Ug,=0. (19)
Again let us transform U into V via the transformation

V=FU. (20)
As a result we obtain field equations in a simpler form,

P, +2V,V,=0, 21)

Vi.=0, (22}
These are the field equations R;; =0 of the Einstein
theory for the static line element

ds? = exp(2V) dt® + exp(— 2V) (v, dx* dx®). (23)

Now applying the transformation given by Eqgs. (16)
and (20) we are in a position to reduce the Brans—Dicke
field equations (14) and (15) for the line element (7) into
Einstein field equations (21) and (22) for the line element
(23).

Thus we have established the following results: Cor-
responding to every static solution V and y,, of the
empty space field equations of Einstein theory, we can
find a solution of the vacuum field equations of the
Brans—Dicke theory with the same ¥,,, ¢ as derived
from Eqs. (5) and (16) and the same U from Eqs. (18)
and (20).

4. SOME PARTICULAR STATIC SOLUTIONS OF THE
BRANS-DICKE FIELD EQUATIONS CORRESPONDING
TO WELL KNOWN SOLUTIONS OF EINSTEIN THEORY

Now using the technique given in Sec. 3, we shall ob-
tain some solutions of vacuum field equations of the
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12)
(13)

—
Brans—Dicke theory from some well known solutions

of Einstein theory.
A. Schwarzchild type solution in standard coordinate

The Schwarzchild solution in the standard coordinate
is given by the line element

2m 1
dsZ:(l—7—> art - T2/

x[d72+7’2( -2—’”->(d92+sm29d¢2) . (24)

>

The corresponding solution of the Brans—Dicke theory
will be given by the following line element

ds®=(1=2m/y)'Fdft = (1 = 2m/r) BV F
X [dt? +72(1 = 2m/7){dc? + sinfo de?)],
with the scalar field ¢ given by ¢ = (1 - 2m/7)E/?F,

(25)

B. Schwarzchild type solution in the isotropic coordinate

This solution is given by the metric
1-m/7r\? 1-m/v ‘2( m?\?
2 _ 2 _ -
ds ‘(1 +m7r) dt (1 +m7r) -

X [dr? +y*(do® + sin®o d¢?)]. (26)

The corresponding solution of the Brans-Dicke theory
will be given by

d82_<1_m/y)2/rdt2 <1_,m//7.>—2(1+E)/F
“\1+m/r 1+m/r

2\2
X (1 —%—) [av? +7*(do? + sin’a d¢?)], (27)

with ¢ given by

¢~<1 - m/?’ ~E/F
N\ +m/7 *
C. Brans-Dicke static solution

If in Eq. (27) we put m =B, E=C, and F=(1 +E
- E%w/2)1/2 =), we obtain the line element (27) in the
following form:

ds?— l—B/’V 2/Adt2 (1_3/,’, =2(1+C) /2
“\1+B8/r “\1+B/r

2 2
X 1—% [@r? +vH{do® + sin’a d¢?)]

or

- 1_3/,, 2/ R I_B/,,)zm-c-i)/x( 2)4
@ “(1’?17? W -\T75/r L+

X [dr® +v¥(do? + sin’c do?)], (28)

with ¢ given by
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_(1=B/r\"
¢=\1v87) -
B, C, and X are arbitrary constants. The solutions

given by Eq. (28) are similar to the solution obtained by
Brans and Dicke! when we choose @y =0, 8;=0, and

P=1.
D. A conformastat solution

Das® has obtained a conformastat solution which is
given by the metric

ds®=(1 - mx)?dt? = (1 = mx)(dx® +dy? +dz?), (29)
where 1 = const.

The corresponding solution of the Brans—Dicke theory
will be given by

ds? = (1 = mx)"2/F @it — (1 = px) 22+ BY/ F
XAdx® +dy* +dz?), (30)
with ¢ = (1 = mx)E/F,
E. A static plane symmetric solution

The static plane symmetric solution of Taub® is given
by the metric

ds? = (loyx + Foo)" 1 2(dt? — dx?)
~ (R4 + Ry} (dy? +dx?), (31)
where %y and ky are constants.
The solution of the Brans—Dicke theory will be
ds? = (Ryx + Ieg) ™1 3T @12 = (yx + Ry ) E¥V/2F=D 42
= (g + Rg) B IFMUD (2 4 g2y (32)
together with
b = (hyx +Rg) T/ 4F,
F. Levi-Civita solution

Levi-Civita’ has obtained a static symmetric solution
given by the following metric

ds® — (1,/1,0)<q2+2q> YA < dr?)
— /)Wt dot = (v/vy) T dz?, (33)
where 7, and ¢ are constants.
Use of transformation
z—il and [—iz (34)
changes the metric (34) into the convenient form
ds? = ({—0 )_q i ~ (;%)q

2

\9 /2
xK—_> (dvt+dz? +7’2d¢>2]. (35)
7
The Brans—Dicke solution corresponding to this metric
is
/F e(1+EY/F
2 _(F\* 2 _(¥
ds ~’(VO) at (70)
a /2
x[({—) (@7 +dz?) +72 d¢>2], (36)
0
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with ¢ = (v/7)F9/2F
Again using the inverse of the transformation (35), i.e.,
2= -it, i~ —iz we get the metric (36) in the form

ds? = (v [y WD Frat 12 (qp2 _ dr?)

- (7/70)-Q/Fd22 - (y/,yo)q(ldvE)/F ,J/Zd(z)z’ (37)

with ¢ = (/7 ,)Ba/2F,

G. ““Curzon” particle solution

The static axially symmetric solution representing a
Curzon® particle is given by

ds® =exp(~ 2m/p) df* — exp(@m/p)
X[exp(= m¥?/2p*dr? +dz?) +d¢?], (38)
where m = const and p=(#? +22)1/2,

The corresponding solution of the Brans—Dicke theory
is given by the metric

ds® =exp(— 2m/pF)dt* — exp(@m/pF)
X [exp(= m™?/2pWMdr* +dz?) +d¢?], (39)
with ¢ given by ¢ = exp(mE/pF).

5. NONSTATIC SOLUTIONS

In this section, we consider the nonstatic Brans—
Dicke vacuum field and propose a technique by which
Brans—Dicke solutions analogous to nonstatic solutions
of the Einstein vacuum field equations can be obtained.

For the purpose, we consider a nonstatic line ele-
ment (7) taking £ =0 without loss of generality because
E is an arbitrary constant there. Here we also assume
that U is a function of ¢ only.

The field equations (11), (12), and (13) in this case,
are reduced to

Py +expl= 4UNAU? = U, ()7 == expl~ 4U)vap), 1U, 4,

(40)
and
32U, = U, ;)= (w+ N2 = U 2y 2, 4. (41)
Assuming X to be functionally related to U as
A== U/(w+1), 42)
the above equations are reduced to
Py +[2=1/(w+1)]U%, exp(= 4U)v,, =0, (43)
2U%, ~ U, =0. (44)
Equation (44) implies that
U, =K exp(2U), (45)
where K, is a arbitrary constant,
Therefore, Eq. (43) takes the form
Py +2ady,, =0, (46)
where
=K1 - ${w+1)"),
Further, Eq. (44) yields on integration
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U=loglkt +a,)
or
U=logla/[1-3(w+1)1]/2 +a,l,

where o, and o, are arbitrary constants,

(47)

For Einstein nonstatic vacuum field, the analog of
field equation (40) is P, +2a?y, =0, which is exactly
the same as Eq. (46), but the analog of field equation
(41) in this case yields

U=log(at +a,).
o, and o, are arbitrary constants,

Thus for ¢ given by Eqs. (7) and (42) the solutions
are identical for the two theories for line element (7)
with slight difference in constants. In fact, as Eq. (46)
implies that the 3-geometry is a space of constant curva-
ture, these solutions are just certain Robertson—Walker
cosmologies without matter,

6. CONCLUSIONS

The immediate use of the results obtained in Secs.
(3) and (5) is to find the solution of the Brans—Dicke
field equations from known vacuum solutions of Einstein
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theory. Besides, these solutions furnish examples of
singularities occurring in the Brans—Dicke theory.

We hope that this technique will provide an important
tool to handle the sophisticated and intricate problems
of Brans—Dicke fields with possible applications in
cosmology.
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Quadratic Hamiltonians, quadratic invariants and the
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We show that any 2n-dimensional quadratic Hamiltonian may be transformed by a (usually time-
dependent) linear canonical transformation into any other 2n-dimensional quadratic Hamiltonian, in
particular that of the isotropic harmonic oscillator. This latter Hamiltonian possesses the symmetry group
SU(n) and n”—1 linearly independent quadratic invariants which provide a basis for the generators of the
group. Every other quadratic Hamiltonian is shown to have a quadratic invariant possessing SU(n)
symmetry. The free particle structure is given explicitly. The anisotropic oscillator is shown not to possess
SU(3) symmetry based on gquadratic invariants. However, its wavefunctions and energy levels may be
obtained directly from those of the isotropic oscillator whether the frequencies are commensurable or not.

1. INTRODUCTION

Since the pioneering work of Fock' on the Coulomb
problem and Bargmann® on the isotropic time-indepen-
dent oscillator, the study of dynamical symmetry groups
in quantum mechanics has been one of the dominant
features of the subject. Not the least of the reasons for
this has been the connection between the existence of a
particular symmetry and the solution of the Schrodinger
equation.?

The existence of a symmetry group requires the exis-
tence of a set of constants of the motion such that all
elements of the set commute (classically have zero
Poisson bracket) with one particular element. The other
elements or suitable linear combinations of them are
then required to have commutation relations appropriate
to the generators of the particular symmetry group
sought. For problems with time-independent Hamil-
tonians, the Hamiltonian itself was taken as the central
invariant and the search for a symmetry group became
the search for sufficient other constanis to constitute a
basis. For both the Coulomb and oscillator problems,
the angular momentum provided some of the required
constants. The remaining constants were found in the
Runge~Lenz vector? for the former and in a symmetric
matrix® for the latter. Physically these constants de-
scribe the shape of the classical orbit.® Each of these
quantities has an unambiguous definition in terms of
quantum mechanical operators and so the symmetry
group was applicable to the quantum mechanical prob-
lem. This was not the case for the anisotropic oscilla-
tor with incommesurable {frequencies.®” Tt has been
pointed out frequently® that the problem is in finding the
appropriate operator expressions for classical expres-
sions involving nonintegral powers.

The case of a time-dependent Hamiltonian produces
the need to determine the basic constant of the motion,
if any. A class of problems which has been of con-
siderable interest is that which reduces to the time-
dependent harmonic oscillator. This problem occurs
in the motion of a charged particle in an electromag-
netic field®*!* or in the evolution of coherent states in
lasers.” The existence of an exact invariant for the
time-dependent oscillator was shown by Lewis' and
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Riesenfeld.!! A simpler demonstration has been pro-
vided more recently.'® A discussion of the symmetry
group of the three-dimensional time-dependent har-
monic oscillator was given by Gunther and Leach! in
which they showed that SU(3) was the symmetry group
of the invariant.

The use of canonical transformations in the solution
of guantum mechanical problems has received con-
siderable attention in recent years.!>?°® The employ-
ment of time-dependent transformations?®2*2! has
broadened the range of problems which can be success-
fully tackled. Such transformations have been particu-
larly fruitful when applied to time-dependent oscillator
Hamiltonians, in establishing both an interpretation for
the invariant associated with the motion and that the
motion is characterized by the symmetry group SU(n)
and also providing a relatively simple method for the
solution of the Schrédinger equation.

In this paper we examine the general class of quadratic
Hamiltonians describing some n-dimensional motion.
We show that classically every such Hamiltonian has a
quadratic constant of the motion which possesses SU(n)
as its symmetry group. In general, this is not the sym-
metry group of the Hamiltonian, but we may say that the
Hamiltonian is characterized by the noninvariance
group SU(x). There is no problem in the transition to
quantum mechanics. We give an explicit demonstration
of the SU(3) structure for a three-dimensional free par-
ticle and discuss the problem of the anisotropic oscilla-
tor with noncommensurable frequencies. In particular
we show that its nondegenerate energy levels may be
obtained by transformation methods from those of the
degenerate isotropic oscillator.

2. LINEAR CANONICAL TRANSFORMATIONS

Writing the conjugate canonical coordinates (q,p) as

g;=w*, i=1,n, p=1n 2.1)

pi=wt, i=1n, p=n+1,2n,
Hamiltonian’s equations of motion are

9H

N e 2.2

b= o= (2.2)
and the Poisson bracket of two scalars F and G is
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. aF\7T [8G
[F,(J]pBw— (%) €<%> ) (2.3)
where ¢ is the 2n % 2n sympletic matrix (% ).

The general linear transformation from coordinates
wto @ is

(2.4)

where S is a 2n X 2n (real) matrix and r a 2nx 1 (real)
column matrix. The condition that (2.4) be canonical is

SeST=¢. (2.5)

W=SW+TrewW=SwW+T,

In terms of w, the general quadratic Hamiltonian is

Hw)=%wlAw+BTw+C, (2.6)

in which A is a 2n X 2n symmetric matrix, Bisa 2nx1
column matrix, and C is a scalar. A, B, and C are co-
ordinate free, but may be time-dependent. Under the
transformation (2.4), H(w) is transformed to H{w) where

Hw)=, wTAw+BTw+C 2.7
provided®®

S=¢AS-ScA, (2.8)

f=¢Ar+e¢B-SeB. (2.9)

Equations (2.8) and (2.9) are linear first order systems
and so possess solutions®® with continuous first deriva-
tives provided the elements of the matrices 4,4, B, B
are continuous functions of time over the interval of
interest. In general S will contain (2x)* and r (2x) ar-
bitrary constants. The condition (2.5) imposes some
constraint on the number of arbitrary constants of S,
but does not determine them uniquely.

We note that C and C do not appear in (2.8) and (2.9).
In classical mechanics this reflects the invariance of
Hamilton’s equations of motion to the transition H—-H:
H=H- C. Quantum mechanically, this invariance is ex-
pressed as an arbitrary time phase in the Schrodinger
wave function.

3. THE FORM OF H

In our previous applications of time-dependent linear
canonical transformations,'3:'*2%2! the gignature of
wTAw and w74 w has been 2, i.e. the transformations
have been between attractive oscillator Hamiltonians.
This restriction is not implicit in any of (2.5), (2.8), or
(2.9). That it is unnecessary may be illustrated by using
the simple example of the one-dimensional oscillator

with Hamiltonian
H=3(p2+ w?¢®), w constant. (3.1)

Some possible forms for H and the required transfor-
mation matrices are

(1) H=3(P' - Q%).

—(e¥ta+e vt g),(eta+ev i)
S:[—w(e“"éz—e'“”é),w(ewta_e-ms)} ; (3.2)
where
a=Asinwt + Becosw!, B=Csinwt +Dcoswt, (3.3)
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20 (AD-BC)=1. (3.4)

(ii) H=0.
-a, a
Sz[—é, B]’ 3.5)
where
a=Acoswt +Bsinwt, g=Ccoswt+Dsinwt, (3.6)
w(AD~-BC)=1. (3.7)
(iii) H=wPQ
—devt, aevt!
oo Zion o) =
where
a=Bcoswt —Asinwt, p=Dcosw! - Csinwt, (3.9)
w(AD-BC)=1. (3.10)
(iv) H =P,
-, o l+c
T (A

where a and g are the same as in (ii), ¢ and % are arbi-
trary constants and use has been made of the equivalence
of H and (H-C).

The particular case H=0 is the one used in the solu-
tion of the Hamilton~Jacobi equation. However, the so-
lution of Hamilton’s equations for (3.1) may be obtained
from the solution of the Hamilton’s equations for any
H (@) obtained from (3.1) via a canonical transformation.
Generally H and H are not numerically equal since

aF

H=H+ —,

= (3.12)

where F is the generating function of the transformation.
For a linear transformation F is a quadratic form whose
coefficients depend upon the elements of S (and r where
applicable). If S is time-dependent, clearly H = H.

4. THE ARCHTYPAL QUADRATIC HAMILTONIAN

From the foregoing, it is obvious that any quadratic
Hamiltonian (2.6) is related to

4.1)

by a linear canonical transformation. We term this the
archtypal quadratic Hamiltonian because it possesses
the dynamical symmetry group SU(») as an invariance
symmetry group. The generators of the group may be
written down in terms of constants of the motion de-
scribed by (4.1) which are quadratic in w.

H=%wTw

Suppose € is a time-independent quadratic form given
by
C=3wiCw, (4.2)

where C is a constant 2n X 2n real symmetric matrix.

€ is a constant of the motion provided
(€, Hpp=w CTew=0, (4.3)

i.e., C has the form
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[ U’ W]
C=l_-w, vl

where U is a symmetric and W a skew-symmetric n X un

(4.4)

matrix. We define the set of matrices (U,;, W,;i=1,n;
j=1,n) as
[Usi)mn= Oim Oy + 0mOpi» (4.5)
[Wlmn=880(5 = i)(6;,0,; = 8,,,0,)- (4.6)
Any general C may be written as
|: o Usis BiWis
“=[- BiiWiys aijUiJ':l ’ (4.7)

where the scalar coefficients a;; and 8;; are symmetric
in { and j.

Writing
u.;%wr[Ué"’ o]w (4.8)
! ’ Uij ’ )
(5,
QB”: 5 w _ W“, 0 w, (4~9)

we have a set of #® linearly independent constants of the
motion which have zero Poisson bracket with H (4.1).
Since

H=% 21, (4.10)

there are n* — 1 constants of the motion linearly indepen-
dent of H. The U,; are the components of the n-dimen-
sional counterpart to the Fradkin tensor.® The £8;; are
the components of the angular momentum tensor.

The above analysis applies equally well to quantum
mechanics. From the »*— 1 constants of the motion we
may obtain the standard generators of the Lie algebra
su(n) by suitable linear combinations. Thus for n=3,
the generators of SU(3) for the quantum mechanical
mechanical problem are

2V3H,=B,,,

12H,=U,,+ Uy, — 2 U35,
4VIEr=,q+ i€y — MU 5 +1€llyy)
WEE, =U,, - U,+2icl,,,

(4.11)

in which ¢ and X take the values + 1 independently. The
H’s and E’s satisfy the usual commutation relations
(c.f., Fradkin,® GUnther and Leach,* and Sec. 6 for the
discussion of the free particle).

5. BEHAVIOR UNDER TRANSFORMATION
Under the linear canonical transformation
W=Sw+rew=Sw+T, (2.4)

the Hamiltonian H ( w) which gives a description of the
motion in wequivalent to that of H{w),(4.1) in w is given

by
H(w)=H(w)+8F/a3¢t. (3.12)

In w we also have an expression for H which we write
as H(w). Since
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H(w)=0, (5.1)
H(w) is a nontrivial constant of the motion described by
H(w) because H(w) is nonzero. In general [H(w), H(w)]p,5
is nonzero unless 3F/3/ has zero Poisson bracket with
H@®).

As the transformation from w to w is both canonical
and nondegenerate, the symmetry group of H(w) is pre-
served for H(w). Suppose the generators of SU(x) for
H(w) are G y(w), N=1,7n* - 1 with € y(w) having the form

Cy=afilly,+ YT - (5.2)
Then

(i) C(w)#0,

(i) 6p@)#Cy(w), M#N, 5.3)

(iil) [Ey(w), H(@)]pp,=0,

(iv) [CS,M((.U), @N(w)]pawz fﬁN@K(w) )
where K, M and N range over the values 1 to »*- 1 and
the f;,‘N are the structure constants. These properties
are invariant under a linear canonical tranformation,
(5.4) (i) and (ii) due to the nondegeneracy and (5.4) (iii}
and (iv) due to the canonicity of the transformation. For
example,

[64(@), € y(@)]ppz = {'3% (S,M(B)} Ti{s% GN(G)}

212 6@l sestd L g @)
= %@M(w € 5—(:’- @N(w’
=f1{1(1v@ K(a)

since SeST=¢.

For every H obtainable from H (4.1) under a linear
canonical transformation, there exists a constant of the
motion H(w) possessing the symmetry group SU(r) which
is thereby a (usually noninvaraince) symmetry group
characterizing A. Alternatively, any given quadratic
Hamiltonian may be transformed to the archtypal form
(4.1) which possesses »n® — 1 associated constants. In
the original coordinates, (4.1) and the associated con-
stants provide the (noninvariance) symmetry group for
the Hamiltonian.

We emphasize that these results apply equally well to
quantum mechanics when the usual conventions are ob-
served. We note that the definitions of H and the ¢ are
already symmetric in the products of w* and .

6. THE FREE PARTICLE AND SU(3)

In three dimensions, a free particle has the Hamil-
tonian

H=3p?, (6.1)
where p is a three-vector. The archtypal form

H=3(P*+ Q") (6.2)
is obtained by the transformation

Q a, —at+81la

P N

in which
P.G.L. Leach 448



a=Acost + Bsinti, g=Ccost +Dsini. (6.4)

The transformation (6.3) is canonical provided the con-
stant 3 X 3 matrices A, B, C, and D satisfy

ACT=CAT, BDT=DBT, ADT_-CBT=]. (6.5)
In particular we may set
A=I, D=], C=0, B=0, (6.6)
so that the transformation matrix is
Icost, ~Iicost+Isint
5= [ -Isint, Itsint +Icost ] (6.7)

Applying the transformation (6.3) to the generators of
SU(3) given in (4.9), in the (q,p) coordinates we obtain
the quantum mechanical generators

2V3H,=q,p,- P, 5
2q5+ (1+ 20 p+ p5 - 2p7%)
- 2Uq, b1+ 22— 29515) ,
4B EX=q,p,~ qspotie(dshy — 9, bs)
= Ma,qs+ (1+ 2P, py— Ha, p3+ p1d))
— iAo+ (L+ By py = Hgu byt pods)) s
46 E, =q} - 45+ (1+ )5 - p3) ~ 2tq, py — 22 0,)
+ 2ielq,a,+ (14 23, by ~ (4, b+ D100} -

(Note that there is no necessity to write 4, or E,, in
symmetric form since % terms cancel.)

12H,=¢*+ ¢~

(6.8)

Using these generators we directly confirm the SU(3)

w2 cos(w, — 1), 0, 0, :
0, wi/2cos(w, — 1)¢, 0: I

{

0, 0 l/zcos(wa—l)tl

|
B e T |

w!/?sin{w, - 1), 05 0, :
0, wt/2 gin(w, - 1)t, 0 :
0> 0, 1/25111(0) —l)t:

The transformed Hamiltonian

H= 13 ()

i=1

(7.3)

is isotropic and exhibits the full degeneracy associated
with SU(3). This degeneracy is associated with the ex-
pression for H in the (q,p) coordinate system which is
the quadratic invariant
1 3
I=3 Z (w, g3+ wi*p3).

i=1

(1.4)

I (7.4} commutes with H (7.1). The constants of the mo-
tion which provide a basis for the generators of the
SU(3) group of I are

Iii=%(wiq2i+w;2p2i): (7.5)
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w

commutation relations, viz.
[Hqu]:O’
[H,, B )= (2V3) EY, [H,, B}=exr {2) R},
[HnE ]=€ﬁ(‘/§—)-1Eze> [H2,E2e]=07
[EY, ED2|=0, [E)E,]=0,
[EY E*]=eh(2V3) H, + xR (2) H, ,
[EY EXM=- et (VE)E,,,

[EY E,.)= ek (VB)1ED

-g?

(6.9)

[Ese, B, =€ B (V3)'H,.
The invariant for the motion is
=3 [qi+qi+ @i+ I+ B)(pT+ P+ b3)
~ Hg Py + D10y + Qo Dot Pola+ A3 Pat Pod5))

and, as has been directly demonstrated, I possesses the
dynamical symmetry of SU(3). As 8]/3¢ is nonzero, I
does not commute with H and so SU(3) is a noninvariance
symmetry group for H (6.1).

(6.10)

7. THE ANISOTROPIC OSCILLATOR:
NONINVARIANCE GROUP

The three-dimensional time-independent anisotropic
oscillator has the Hamiltonian
1

H= =

3 & (7.1)

(P3+wiqy).
It is transformed to the archtypal oscillator Hamiltonian
by the linear canonical transformation with coefficient
matrix,

wi’/? sin(w, - 1), 05 0

0 - w2 sin(w, - 1)t, 0

0, 0, /2 sin(w, - 1)t
2 eos(w, - 1), 0, 0

0, w;'/2cos(w, - 1)t, 0

0, 0, w32 cos(w, - 1)/

(7.2)

-

I;;= (w20 %q,q; + w720 2p, p ) cos(w, — w,)i
+(w} 2w 2 p; - W 2w 2 p ) sinfw, - w,)t,
(1.6)
L= (w}?w} %, ¢4 0207 %, p ) sin(w; — w, )t

+((,.,1/2 -_1/2qp'__ -1/2 1/2
i

q;p)cos(w; — w,)
(7.1

(no summation on either ¢ or j in (7.5-7). Although
[1:;, H] is zero,

[£i; H]=—i7i(w; ~ w)Ly;, (7.8)
(L, H=ill (w; = w)I,;. (7.9)

ij»
Thus the SU(3) basis for I does not provide a like basis
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for H.

We point out that this does not exclude SU(3) from be-
ing the symmetry group for the anisotropic oscillator,
but it does exclude the possibility of a quadratic basis.
When the ratios of frequencies are rational, the sym-
metry group exists both classically and quantum me-
chanically.””!” When the frequencies are incommen-
surable the classical generators involve irrational
powers.5 Although considerable progress has been
made in constructing consistent quantum mechanical
operators when the powers are ratiornal,'® irrational
powers as yet defy description. In this case it is possi-
ble that a consistent quantum mechanical discussion of
the operators is not possible.

8. THE ANISOTROPIC OSCILLATOR: ENERGY STATES

The effect of a linear canonical transformation on the
Schrodinger wavefunction is well established.'®2® Un-
der the transformation

Q S; S.r14
[P}[SB Sj[p] @
we have
0(a, 0= [ dQK,(q,Q,03(Q, 1), (8.2)

where the kernel K,(q,Q, /) is given by
K,(q,Q,0)=(2m) "/ ?|detS, [ *exp{i F,(q,Q, 6)}, (8.3)
2F1(q, Q, t)z"QTszTSIQ—qulTSZTq'F 2QTSQTq3 (8-4)

provided S, is nonsingular. If S, is singular, the ex-
pression for K, may be written in an alternate form.
For our discussion this is not the case and (8.3) with
(8.4) suffices.

The energy levels of the motion described by ¥ (q, ¢}
may be calculated without the form of i (q, {) being
known since

WolH| )=t [ dq [7 dQ [~ Q' ¥HQ,NK¥a,Q,1)
x { Q0 Kila, @ 1)

3 —
+K1(q’Q,7Z)g ZL‘H(Q"Z‘)%. (8'5)
For the anisotropic oscillator, K,(q,Q, ¢} may be con-
structed from (7.2) and 7,(Q, {) is the Schrodinger wave-
function for the isotropic oscillator. It is merely a
matter of persistent calculation to show that

(o H| 2 =7 @ (g + 2)+ Fwy(ny+ 3) + T,y + 3) (8.8)

for

W@ |H Ty =ty + gt g+ 3) . 8.7

Thus, when w,, w,, and w, are noncommensurable, non-
degenerate energy levels are obtained even though the
energy levels of i are degenerate.

It may have been observed that we wrote the kernel of
(8.2) as K,(q,Q, {) which was expressed in terms of an
F,(q,Q,#). This is not usually done in the literature
(cf. Boon and Seligman®®). We do this to emphasize
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that classically the function F,(q,Q, ) is the generating
function of the first type for the canonical transforma-
tion from H to H. Should we so desire, the other gener-
ating functions may be used to construct a kernel. Then
we may transform wavefunctions from momentum to co-
ordinate, coordinate to momentum, and momentum to
momentum representations in (Q, P) and (q,p), respec-
tively. Thus

$(a,0)= [" dPK,(q, P,N(P,1), (8.8)
¢, 0= dQK,(p,Q, 10 F(Q, 1), (8.9)
¢,1)= |~ dPK,(p,P,)3(P,1). (8.10)

9. COMMENT

We have restricted the present discussion to quad-
ratic Hamiltonians, quadratic invariants, and linear
transformations for two reasons. Firstly the theory
has a particularly elegant form and secondly there is
no difficulty in the transition to quantum mechanics.
For every quantum mechanical problem described by a
quadratic Hamiltonian, the group SU(n) may be asso-
ciated in at least a noninvariant way.

It would appear that the wavefunction and energy lev-
els for any such Hamiltonian may be obtained via (8.2)
and (8.5) from the archtypal quadratic Hamiltonian.
This is certainly the case when the signature of the
quadratic part of the Hamiltonian is 2n. However, when
(8.5) is applied in the case of a free particle Hamilton-
ian a quadratic function of time is obtained. Evidently
the transition from classical to quantum mechanics im-
poses some constraints on the validity of the application
of (8.2) and (8.5), a feature which has been noted in a
different context by Kennedy and Kerner.** The nature
of these constraints will be the subject of further in-
vestigation.

Another worthy area of investigation is the applica-
bility of the ideas used here to general Hamiltonian
systems. It has been pointed out'® that classically every
2n-dimensional Hamiltonian may be transformed to any
other 2n-dimensional Hamiltonian by a suitable canoni-
cal transformation. If the canonical tranformation is a
point transformation, the transition to quantum mechan-
ics is always possible.?® However, in the more general
case, the extent to which such results may be applied in
quantum mechanics will be determined by whether or not
the quantum mechanical operators in the different coor-
dinate systems are uniquely related.
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Splitting and representation groups for Polish groups®
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It is shown that all continuous unitary/antiunitary projective representations of a Polish group G, with
the same subgroup of elements represented into the projective unitary groups, arise from continuous
unitary/antiunitary (ordinary) representations of a topological group (called a splitting group) obtained
from an extension of G by an Abelian topological group. Moreover, there exists always a splitting group
which is “minimal” in some well-defined sense (a representation group). A sufficient (resp. a necessary
and sufficient) condition for the existence of a Polish {resp. of a second countable locally compact)

representation group is given.

. INTRODUCTION

The theory of continuous unitary/antiunitary projec-
tive representations (CUAP-reps) of topological groups
on a separable complex Hilbert space $ has a deep
physical motivation in Wigner’s approach to symmetries
of quantum mechanical systems, -3 In some sense, it
is rooted into the foundations of quantum mechanics
(Ref. 4, Chap. IV, Sec. 14). Nonlinearity is an essen-
tial feature of CUAP-reps: The group elements are
represented by bijective mappings of P(9) (the projec-
tive space deduced from $) into itself which belong to
the projective unitary/antiunitary group PUy,(§) (or,
in physical terms, which preserve transition probabil-
ities). However, it is possible to “linearize/antilinear-
ize” CUAP-reps in many ways. Two methods were
analyzed in Ref, 3 for the case where the group G con-
sidered is Polish, i.e., is a second countable topologi-
cal group which is metrically topologically complete
(or, what amounts to the same, has a Polish underlying
topological space).

The first alternative is to lift the CUAP-reps of the
Polish group G to Borel unitary/antiunitary multiplier
representations (BUAM-reps) of the same group G. The
multiplier representations are sometimes also called
“projective representations”; they emphasize the more
striking characteristic of the theory of projective rep-
resentations, namely the occurrence of multipliers.
The study of multipliers leads us, following Mackey,®
to the second alternative: Every BUAM-rep of G such
that the elements represented by unitary operators
constitute a fixed subgroup N of G of index 1 or 2 can
be derived from a continuous unitary/antiunitary
(ordinary) representation (CUA-rep) of a Polish group
G%, obtained from a topological extension of G by U(1),
where £ is a Borel multiplier for (G,N). Actually, we
must consider a collection of such extension groups,
one for each equivalence class of multipliers.

In the present paper, we investigate, again for a
Polish group G, a third alternative modeled on the one
put forward originally by Schur in his fundamental
works on (linear) projective representations of finite
groups, 7 Explicitly, we look for a topological exten-

Y gupported by the Deutsche Forschungsgemeinschaft,
Y pregent address: Institut de Physique, Université de
Neuchitel, CH-2000 Neuchétel (Switzerland).
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sion of G such that all CUAP-reps of G with the same
subgroup N of elements represented into the projective
unitary groups can be derived from CUA-reps of the
group obtained from the extension. The difference with
the second alternative recollected above is that now
only one extension group is required in order to give
all CUAP-reps of G with the same subgroup N, In Sec.
11, we show that such a group [a “splitting group for
(G,N)’] always exists and that, in addition, there is one
which is in some sense “minimal” [a “representation
group for (G,N)”]. The question (already delicate for
finite groups) of the unigueness of a representation
group for (G,N), up to topological group isomorphisms,
is not studied in this article. The representation group
constructed in Sec. II is not, in general, Polish. Thus,
we are faced with the problem if there exists a Polish
{(resp, second countable locally compact if so is G)
representation group for (G,N). In Sec. Ill, we give a
sufficient condition for the existence in the case where
G is Polish and a necessary and sufficient condition in
the particular case of G second countable locally com-
pact, The results of the previous sections are applied
in Sec, IV to some relevant types of Polish groups.
Quasifibered extensions are briefly considered in Ap-
pendix A and the exactness of the inflation-restriction
sequence, in a particular case, is proved in Appendix
B.

The notations, definitions, and results of Ref. 3
(about unitary/antiunitary projective representations),
of Ref. 8 (about cohomology of groups), and of Ref, 9
(about “locally continuous Borel cochain complexes”)
are used throughout the paper, with the convention that,
unless otherwise specified, every group G considered
is written multiplicatively and its neutral element is de-
noted by e; (as in Refs. 3 and 9). In particular,

(resp. ') is always an arbitrary sepavable complex
Hilbert space, § is the group homomorphism of Uy, (9)
onto PUy,{(9) defined in Ref. 3, Subsec. II.1, and &y is
the operation of G on U(1) defined by Ref, 3, (II.8).
Moreover, we denote by I the trivial operations and, if
(E, p) is an extension of a group G by an Abelian group
A and 0 ig a normalized section associated with p, f; is
the factor set of (E, p) defined by o, The symbol 4, fG,
where G is a group, Ay is a G-module, and fe Z%(G,4y),
stands for the group of all ordered pairs (2,g) (ac 4;

g & G) with the multiplication defined by

(@,2)a’, gV =la(¥(g)a") flg,8),g¢").
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By a character of an Abelian topological group A we
mean a continuous unitary chavacter, i.e., a contin-
uous group homomorphism of A into U(1). If A is a
group without topology (an “abstract group”), we con-
sider it tacitly as topological in an obvious way, name-
ly as a discrete group. The Abelian group of all charac-
ters of A (with the pointwise multiplication) is denoted
by A, and we say that A separates points if, for each
pair a,a’ of distinct elements of A, there exists ch
such that x{@)#x(’). The symbol T is used, when a
group topology is defined on A, to denote the canopical
mapping of A info 4, i.e,, the mapping of A into A such
that T(@){y)=x(a) for allac A and all yc A,

ti. SCHUR’'S THEORY

In his first paper on projective representations,
Schur showed that if G is a finite group, there exists a
central extension (E, p) of G by a finite Abelian group
such that, for each projective representation ¥ of G on
the projective space P(V) deduced from a finite-dimen-
sional complex vector space V [i.e., for each group
homomorphism v : G~ PGL(V)], we can find a linear
representation w of E on V {i.e., a group homomor-
phism w : E -~ GL(V)], making the following diagram
commutative;

E—*% _ GL(V)
L D
G——2—— PGL(V).

[

(. 1)

Here A is the canonical mapping corresponding to Q.
The group £ (which is a “splitting group for G” in the
terminology borrowed from Moore!’) was called a “suf-
ficiently supplemented group” (“hinreichend erginzte
Gruppe”) by Schur, who showed in addition that there
always exists a “representation group” (“Darstellungs-
gruppe”) for G, namely an E of minimal order. The
same result is valid with PUy, (§) instead of PGL(V)
and Uy, () instead of GL(V), but then the extension is
not always central (Ref, 11, Theorem 4). Our goal is
now to enlarge this to Polish groups and CUAP-reps.

Let G be a Polish group, let N be a closed normal
subgroup of G of index 1 or 2, and let A be an Abelian
Hausdorif topological group., The operation ¢, of G on
A such that, for eachacA,

¢ylgla=a if geN
and (1L, 2)
oylgla=a?t ifge G=-N
is topological, and so AwN is a Hausdorff topological G-
module. From now on, @, will stand for this operation,
the groups G and A concerned being clear trom the con-
text. Notice that, if y €A, we have
(by(g)x(a) :x((pN(g)a)
forallgcGandallacA,

(11, 3)

Now let (E, p) be a topological extension of G by A,
and suppose that there exists a normalized section 0 as-
sociated with p which satisfies the following conditions:

(SG 1) w0 is continuous for every CUA-rep w of
E on $ satisfying w{a) = =x(a)ldg for all ac A, with some
XEA, and Eglw)=p (V).
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(SG 2) There exists a mapping v:x by of A into
CYG,U(1)s,) such that, for each xc A, (xo f,)6U,
cZ%(G, U(ﬂa ) and, if v is a locally continuous BUAM-
rep of G on ©Nwith Gy(v) =N and multiplier (x °f,)5v,,
the mapping

ao(g)xlahy(ghv(g) (acA; gcG),
of E into Uy, (D) is continuous.
Notice that yof, € Z3(G, U(1) ) by virtue of (II. 3).

~N
The mapping x = (x o/,)8u, of A into Z5(G, U(l)e,) pass-
es to the quotient to define a mapping

x P L = fo)6uy (modB%(G, U(l)s ) (1. 5)

of A into HY(G, U(1)o ) which we denote by v§'", We
tacitly understand that the groups Hi(G, U(l)o ) and
H%(G, U(l)q, ) are identified by means of y, (Ref 9,
Proposition 2)

(11. 4)

For each CUA-rep w of £ ou § satisfying Ey(w)
=) and w(a) =x(a)ldg for all ac A, with some x
€A, we have

w(E () lo(g’) =x(f,{g, 2" )wo(gg")),

for all g,£” in G. Hence Qewo0 is a CUA[(xf,)ou, |-
rep of G on P(P) with Gy(Qew-0)=N., Now we assume
that

(SG3) The mapping y§'° of A into H? 4(G, U(l)@ ) defined
by (II. 5) is surjective (resp. bijective),

Thus, if g e Z4(G, U(1),,) and v is a CUA[p]-rep of
G on P(9) with Gy @) =N, We can choose x €A such that
(x°f,)ou, €[p]. By Ref. 9, Lemma 1, there exists a
normalized locally continuous Borel section £ asso-
ciated with @ such that v =T 0% is a (locally continuous
Borel) lifting of ¥ with multiplier (xof,)5u,. Let w be
the mapping defined by (II. 4); it is a CUA-rep of E on
© with Eg(w)=p™(N) because

wlao(g)wla'o(g’))
=xal@y(gh@ M (folg, gy (g 1w (gg")
=wlaloy(gla’)f{g,8")o(ge'))

for all a,a’ in A and all g,g’ in G. So we are led to the
following definition,

Definition 1: Let G be a Polish group, 1et N be a
closed normal subgroup of G of index 1 or 2, let A,
be a Hausdorff topological G-module such that A
separates points, and let (E,p) be a topological exten-
sion of G by A"N“ Then E is said to be a splitting
(resp. representation) group for (G,N) [or, alternative-
ly, (G,N) is said to admit a splitting (resp. represen-
tation) group E] if there exists a normalized section o
associated with p such that, for each separable complex
Hilbert space , the conditions (SG1), (SG2), and (SG3)
written above are satisfied,

The continuous open mapping p of Definition 1 is
called the splitting projection of E (onto G), the mapping
o a splitting section of E (or, alternatively, a splitting
section associated with p), and the group A the splitting
kernel of E, If N=G, we say simply that E is a split-
ting (resp. representation) group for G. Notice that E
is Hausdorff.
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Let G,N,A, be as in Definition 1 and let (E,p) be a
quasifibered extension of G by A4, {cf Appendix A), We
can select a normalized section o contmuous at e; as-
sociated w1th 05 furthermore, there exists a mapping v

Tx Py of A into C1(G, U(1),,) such that, for each y
€A, vy is continuous at eg and (x of)5uy € Z%(G, U(l)(I> )
(Remark of Appendix A), for x of(, is regular at e be-
cause so is f,. The mapping ¥3" of A into H%(G, U(l)q, )
defined by {I1.5) is then a group homomorphism Wthh
is actually independent of ¢ and v, provided they are
chosen as above, In the following, we shall denote it
simply by ¥z. Hence E is a splitting (resp. representa-
tion) group for (G,N) with splitting section ¢ if and only
if the following condition is satisfied:

(SG®F) The mapping v of A into H3(G, U( (1)s,) is a
surjective (resp. bijective) group homomorph1sm.

Indeed, the continuity of Qe o0 and of the mapping
(11 4) follows from the continuity of ¢ and v, at ¢g, and
from the local continuity of v. The splitting group £
just considered is said to be quasifibered, and in par-
ticular fiberved if (E,p) is a fibered extension.

A Polish splitting group is quasifibered. On the other
hand, let (E, p) be a topological extension of a Polish
group G by a Polish G-module A, . Then any normalized
Borel section ¢ associated with p satisfies (SG1). Ip ad-
dition, (SG2} is satisfied with v, (g)=1 for all y© A and
all g G, so that vz is simply the group homomorphism
X —{xo fu] (Proposition A.2). Therefore, the Polish
group E is a splitting (resp. representationl group for
(G,N) with splitting section ¢ if and only if A separates
points and (SG®F) is satisfied. Since yy=trgl (cf. Ap-
pendix B), we have also that, it A separates points E
is a splitting group for (G,N) if and only if inf} is a
trivial group homomorphism and that £ is a represen-
tation group for (G,N) if and only if inf} is trivial and
infl is bijective (Corollary to Proposition B, 1),

Remark 1: If the groups G, A above are assumed to
be second countable locally compact, then so is E,
and A separates points. The foregoing discussion on the
meaning of the inflation-restriction sequence in the
theory of CUAP-reps makes the junction with the work
of Moore, 10 who studied second countable locally com-
pact representatmn groups for G (i.e., with N=G) and

“splitting groups”, these however in a more general
setting.

Remark 2: If G is a finite group, every extension of
G by a Hausdorif topological G-module is trivially
fibered. Definition 1 is really a generalization of
Schur’s definition, for in the case of projective repre-
sentations of G on P(V) considered above, condition
(SGOF) translates into the requirement that the group
homomorphism y F[x < f,] of Z1(4,C¥) into H*(G,C¥) is
surjective (resp. bijective), where C* is the multiplica-
tive group of C. This is necessary and sufficient in or-
der that E be a splitting (resp. representation) group
for G (Ref. 12, Proposition 1, 4),

Definition 2: Let G be a Polish group, let N be a
closed normal subgroup of G of index 1 or 2, and let
E be a splitting group for (G,N) with splitting projection
p. ACUA-repuw of E on P is said to be split if there
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exists ., € (Kerp)” such that w(z) = xw(a)Idbfor all a
< Kerp.

The following result was already proven above, be-
fore Definition 1,

Proposition 1: Let G,N be as in Definition 1, let £ be
a splitting group for (G, N) with splitting projection p,
and let ¢ be any splitting section associated with p.

{i} For each CUAP-rep v of G on P(9} with Gy {@) =N,
there exist a locally continuous Borel lifting » of ¥ and
an element y of (Kerp)~ such that the mapping » defined
by (IL. 4} is a split CUA-rep of E on $ with Ey(w)
=p (V).

(ii) For each split CUA-rep w of E on § with Ey ()
=p l(N), the mapping T=Qow -0 is a CUAP-rep of G
on P() with Gy () =N,

Remark 3: By Proposition 1, we have the commuta-
tivity of the diagram

1-——Kerp t— E L G

Xw 4 v

-1,

(1. 6)
1— U{1)—— Uy, (§) —E>PUy, (H)—1,

where 2 is the canonical injection, ¢’ is the injection ¢
¢ 1dg, and x, is as in Definition 2. The right-hand
side of this diagram is the pendant of (II.1).

Remark 4: From Proposition 1, we also infer the
following analog of Ref. 3, Theorem 2': A mapping
u:GXG~—~U(Q)is a (G,N,),~multiplier if and only if
there exists a split CUA-rep w of E on $ such that

FL € [(Xw cfa)(Swa](mOd—Bg(G, U(l)tb,v))'

Proposition 1 affirms that, if U E;,(E, p”{(V)9) is the
set of all split CUA-reps w of E on with Ey(w)=p"' (V)
and B ¢y, (G, N, ©) is the set of all CUAP~reps v of G on
P(9) with Gy(7)=N, there exists a surjection

T’c Y éUA(E; P-t(N), @)_"6 CUA(G,NVg)’

defined by 7,(w)=Q0-w.0. As we did already for the
mappings of Ref. 3, Theorem 3’, we do not specify

the dependence of 1, on . Actually, 7, is independent
of the spliiting section ¢ and is compatible with the
equivalence relation R, defined in il &y, (E, p~ (N)D) by
similarity, when pseudoequivalence (and then equi-
valence and similarity) of split CUA-reps are defined as
follows, in concordance with the corresponding defini-
tions for UAM-reps (Ref, 3, Subsec. I 2):

Two split CUA-Teps, w on O and 2w’ on ', of a
splitting group E for (G, N) are said to be pseudoequiva-
lent if there exists a unitary or antiunitary mapping V:
$ — 9’ and a mapping v : E~— U(1) such that

et {x) =mw'{x)e V

for all xe E, They are said to be equivalent if v(x)=1
for all x< E and sémiélar if §'= Pand V=Idg,

vx)V (1L, 7)

Proposition 2: Let E,G,N,p be as in Proposition 1,
and let w,w’ be split CUA-reps of £ on  and ',
respectively, such that Ey@e)=Ey@')=p 1 (N).

(i) The equivalence (resp. the equality) of the CUAP-
reps 71,() and n,4r’) is a necessary and sufficient con-
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dition for the pseudoequivalence (resp. for the simi-
larity) of w and w’. For w to be irreducible, it is neces-
sary and sufficient that n,() be irreducible,

(i1) The mapping

Neq *NEu s E, P-l(N), @)/Rcs —DcualG,N, ),

deduced from 7, by passing to the quotient, is bijective.

Proof: Let o be any splitting section associated with
p.

(i) The necessity of the given condition is proven by
the same argument used for () and 9(’) in Ref. 3,
Theorem 3(i). To prove the sufficiency, suppose that
n.00) and 7,(v’) are equivalent (resp. equal) and satisfy
Ref. 3, (0. 4), where 7 =7,@) and 7' =u,{x’); then there
exists a mapping v’ : G— U(1) such that

v(gWow(a(g))=w'(0(g))oV (I. 8)

for all g G, Now we define a mapping v: E ~U(1) by

v(ao(g)) =v'(g)kv{x, (@) x.w (@), (L 9)

where ky(x,(a)) =x.l@) if V is unitary and ky(y,(a))
=Y,(a) if V is antiunitary. By virtue of (II. 8) and (11, 9),
we have

v{ao(g)) Vorwlao(g)) =mw (ao(g)) -V (1I.10)

for all ac Kerp and all g G.

Since 2 is irreducible if and only if #|0(G) is irre-
ducible (in an obvious sense), the proof of the assertion
about irreducibility is as in Ref. 3, Theorem 3(i).

P (ii) We have only to prove that 7, is injective; so we
suppose there exist two split CUA-reps w,’ of E on
such that Ey(w)=Ey(e’) =p {(N) and n,(w) =n,@0).
This implies (II. 8), and consequently (II.10), with §’
:.6, 14

We shall now establish (by construction) the existence
of a representation group (and hence, a fortiori, of a
splitting group). We start by introducing some
terminology.

::Ids).l

Let G,N be as above and let py (resp. [Jb) be the can-
onical mapping of Z%(G, U(l)s,) [resp. of Z¥(G, U(1),,) )]
onto H4(G,U(1) ). By a (G, N) -selector [resp. by a
{G,N),- seZecszrwe shall mean a section associated
with pz (resp. with p,) which in addition is a group
homomorphism. Any such section s determines a sub-
group s (H3(G, U(1), )) of Z4(G,U(1),,) which we denote
simply by s(H%). Obviously, every (G,N)g-selector is a
(G, N)b selector. Let ev®, ., be the evaluation mapping
of s(H%) at (g,8")€ GXG, i.e., the mapping of s(H%) in-
to U(1) given by

Ve s () =s(p g, ¢") [Lezi(G, UM, )]

If s(H ) is endowed with a group topology such that

ev® Cergt) is continuous for all g,g in G, then ev®( .

€ s{H%)" and we denote by ev® the mapping of GXG into
s(H%)" defined by ev¥(g, g’ )_ eviis, ). Obviously,

eV ey € S(HY) for all g, g’ in G when s(H3) is a dis-
crete group, It is easy to check that ev®e Z%(G, s (H} )“’N)’
where we have written s (H3),, for (s(H3) ),,, . Notice
that, if s(H%) is a discrete group, the compact open
topology on s (H% )" coincides with that of pointwisge con-
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vergence and makes s(H%)” into a compact (Hausdorff)
group,

Proposition 3: Let G be a Polish group, let N be a
closed normal subgroup of G of index 1 or 2, and let
s be an arbitrary (G,N)g-selector. If s(H%)  is equipped
with the topology of pointwise convergence, there exists
a unique topology on s(H?B);NevsG making it into a
fibered representation group for (G,N) with splitting
projection pr, and a locally continuous splitting section
718 b (esuty 8)

The assertion is meaningful by virtue of the following
lemma,

Lennma: If G and N are as in Proposition 3, then
there exists a (G, N)g-selector.

Proof: 1t is enough to show that B%(G, U(l),,) is
divisible: The existence of a (G,N)z-selector follows
then because the extension (Z%(G, U(l)q, ),pg) of
HE (G, Ull)g, ) by B%(G,U(Q1), ) is inessential (Ref. 13,
Corollary 11 4}, Mutatis mutandis, the proof of the
divisibility is the same as in Ref. 10, Lemma 2, 1.

Proof of Proposition 3: We define a topology on

(HB)W ev®G by taking the set {U, xV,} as the nbd filter
(nelghborhood filter) of the neutral element, where
{U,} and {V,} are, respectively, the nbd filters of the
neutral elements of s(HzB)‘ and G, The nbd filter of any
other element is obtained by translation. Since the
operation ¢, is topological, this topology makes
(s(H3), , ev°G, pry) into a fibered extension of G by
s(H%);N, provided ev® is a locally regular element of

ZUG,s(HY), ) (Ref. 14, Sec. 4). This is the case, for
the mappmg

( £,8 )l“' ev (b & )(‘5 ([lu‘])) ([.U*])(g’g’)

of GXG into U{1) is locally continuous as well as locally
regular (Ref. 9. Corollary 2 to Proposition 3) for all
neZ%(G, U(1), ). Furthermore, ev®is the factor set
defined by o, and o is locally continuous. In fact, let V
be a symmetric nbd of e; such that ev® is continuous in
VXV and let (g,) be an arbitrary net of elements of G
converging to g ¢ V. Then, since ¢ is continuous at ¢g,

limo(g,) =lim(ev®(g,, 87 )0 (g7 )o(g™)™)
X A

=a(g).

The topology is unique because the identity mapping of
s(HB)w ev®G is a homeomorphism for all group topolo-
gles on s(HQB)w evG makmg o locally continuous. Since
s(H%)"is compact, s(H%)* separates points. It remains
to show that condition (SGF) is satisfied. By Pontryagin
duality, the elements of s(HB) are of the form

T (1])), where u<Z%(G, U(I)QN), hence v3 is bijective,
for

ya(rs(e) =[rs(m]))oev’]=[p]. = (. 11)

In the case, studied by Schur, of projective repre-
sentations of a finite group G, there exist, in general,
different nonisomorphic representation groups for G.
However, the corresponding splitting kernels all are
isomorphic (Ref. 6, Sec. 3). It is obvious that also in
the case of CUAP-reps of Polish groups we are con-
fronted with the existence of nonisomorphic representa~
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tion groups. For what concerns the splitting kernels,
we generalize Schur’s result as follows.

Proposition 4: Let G,N be as in Proposition 3 and
suppose (G,N) admits a quasifibered representation
group with splitting projection p. For each (G,N),-selec-
tor s, the mapping 2, of Kerp into s(HZB)A such that

(@)suD=0F2(r])a) (@< Kerp)

for all p < Z%(G, U(I)QN) is a continuous injective group
homomorphism with dense image if s(H%)" is endowed
with the topology of pointwise convergence.

(I1.12)

Pyoof. One sees at once that z; is a group homo-
morphism which is continuous because so is the map-
ping @ - (2 (1) (a) of Kexrp into U(1) for all u
€Z%(G,U(1)y,). Since (Kerp)~ separates points, it fol-
lows from (II. 12) that @ =a’ whenever a,a’ are in Kerp
and satisfy 1,(a) =12,(a’). Now let (Im¢,}* denote the ortho-
gonal of Imz,, i.e,, the subgroup of all elements y of
s(H%)® such that x |Imz, is the constant function with the
value 1, If x is an arbitrary element of (Imz,)*, we have

xGs@) =05 (0, (T x)MNa) =1

for all @ € Kerp; hence y is the constant function with
the value 1. By virtue of Ref. 15, Chap. II, Sec, 1,
Corollaire 1 to Théoréme 4),

Cl(In—ns) = (T-l((Imis)l))l =8 (1128)*'

where cl stands for “closure” and all character groups
are equipped with the compact open topologies.®

Remark 5: The ordered pair (s(H%)", 15) supplied by
Proposition 4 is the Bohv compactification of Kerp (as
solution of a universal mapping problem). ® Indeed, let
Kerp)” denote the group (Kerp)" equipped with the dis-
crete topology and put (s oyp)t=£. Then £ is a topologi-
cal group isomorphism of s(H%) onto ,(Kerp)” and so is
its dual

T: ((Kerp))"— s(H%)"
(with the compact open topologies). As z3=£07;, wWhere

T, is the canonical mapping of Kerp into (;{Kerp ¥, our
assertion follows from Ref. 17, Theorem 2.

~

111. POLISH AND LOCALLY COMPACT
REPRESENTATION GROUPS

In the study of CUAP-reps, the existence of Polish
representation {or, at least, splitting) groups is ob-
viously desirable, However, the (fibered) representa-
tion group for (G, N) constructed in Proposition 3 is,
in general, not Polish and not even metrizable. Indeed,
it is Polish (resp. metrizable) if and only if the compact
group s{H%)" is metrizable, i.e,, if and only if
HY(G,U(l)s, ) is countable (Ref. 15, Chap. I, Sec. 2,
Exercice 1)}3 Furthermore, Moore has given an exam-
ple of a second countable locally compact group G
which does not admit a second countable locally com-
pact splitting group for G (Ref. 10, Chap. III, 3). In this
section, we shall find conditions for the existence of
Polish (and, in particular, second countable locally
compact) representation groups,

Proposition 5; Let G be a Polish group and let N be a
closed normal subgroup of G of index 1 or 2. Suppose
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that we can find a (G,N),~selector s and a group topo-
logy on s (H%) satisfying the following conditions:

(1) ev®, ¢ is continuous for all g,g” in G;

(2) s(H%)" can be endowed with a topology finer than
that of pointwise convergence and making it into a
Polish group P;

(3) the canonical mapping T of s(#3) into P is a
group isomorphism.

Then there exists a unique topology such that
Pu,NevSG, equipped with this topology, is a Polish repre-
sentation group for (G,N) with splitting projection pr,
and a Borel splitting section 0: g+ (e, £).

Proof; Let s(H%), denote the group s{H%)™ endowed
with the topelogy of pointwise convergence. Then
s(H%); is a Lusin space by virtue of assumption (2)
(Ref. 18, TG IX, Sec. 6, Prap. 11}, hence fully
Lindeldf (Ref, 19, Chap. III, Sec. 1, Theorem 2), It
follows that the Borel structure generated by its closed
sets is the coarsest Borel structure on s(H%) making
Borel all the mappings

xFx6nl) @ezbG,U)s,)

of s(H%)" into U(1) (Ref. 19, Chap. 1V, Sec. 3, Theorem
4), Thus, taking account of (1), we have that ev®is a
Borel mapping of GXG into s(H%),. On the other hand,
the identity mapping of S(H%); onto P is Borel (Ref. 18,
TG IX, Sec. 6, Prop. 14), hence ev® is Borel as a map-
ping of GXG into P, It follows that the exteusion

(P, ev’G,pr,) of G by P, is topalogical, with a unique
Polf’sh group topology on ,,Nev‘G such that o is Borel
(Ref. 3, Remark 13). Condition (SG%F) is checked as in
Proposition 3 [using assumption (3)]. Furthermore, )2]
separates points by virtue of (3).=

Conditions (2) and (3) of Proposition 5 are always
satisfied if s (H%) can be equipped with a second counta-
ble locally compact group topology and then s(H%)” with
the corresponding compact open one (which is again
second countable and locally compact).

Corollavy: Let G,N be as in Proposition 5, let
H%(G,R, ) be isomorphic to the additive group of R”
(2 = 0), and let 7 be the covering projection of R onto
U(1). If the group homomorphism (7 of H3(G,R,,)
into H%(G, U(1),. ) has closed kernel in the canonical
topology and countable cokernel, then there exisis a
Polish representation group for (G,N).

Proof: We shall show the existence of a (G,N)g-selec-
tor s and of a second countable locally compact group
topology on s(H%) such that ev®,, ., is continuous for all
g, in G: s(H%)’.;NevsG [topologized as in Proposition 5
with s{#%)" endowed with the compact open topology] is
then a Polish representation group for (G,N) with split-
ting projection pr,.

The existence of a group isomorphism of #%(G,R, )
onto R" (# > 0) being assured by assumption, we identify
the two groups through it and topologize H%(G,RON) with
the canonical topology of R". The additive notation is
used for Z%(G, RQ,N) and for the additive group of R".
Then there exist # elements vy,...,v, of Z4(G,R, )
such that {{v;],...,[v,]} is a (vector space) basis and
thus, for each [v]e H%(G, O, ©)» we can write in a unique
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way

n
[v]= 2 V{[Vz]s (1. 1)
i=t
where 7, € R (1 <i<n). We note that, if ve Z%(G, R,,)
and » € R, then [rv]=7[v], with (rv)(g,g’)=rv(g,g’) for
all g,g’ in G, So, we have an injective group homomor-
phism ¢ of H3(G,R,,} into Z%(G,RUN) defined by
n
tv]) =22 rvy, (11L. 2)
f=1
where [v] is given by (IIL. 1), Since Im(%p)? is divisible
[and is isomorphic to R®*XT¢, with 0<p +q =n (Ref.
18, TG VI, Sec. 1, Prop. 9)], we can find a group
isomorphism of H%(G, U(1),,) onto Im(7g)2 XD, where D
is some countable group. After obvious identifications
by means of this group isomorphism, every element
[] of H3(G, U(1),) can be written as

(1= (@) (v ])lel,

where [v] e H3(G,R, ) and [¢]e D. We topologize

HY(G, U(1), ) with the product of the finest topology on
Im(7,)2 making(75)% continuous and of the discrete topo-
logy on DD, There exists an injective group homomor-
phism s’ of Im(75)% into Z%(G, U(1)s,) such that

s (@i (D) =7ot(v]),

where t is given by (IIL. 2). On the other hand, by the
argument of the lemma of Sec. II, we can find a group
homomorphism s” of D into Z%(G, U(1)s,) such that
pals”"([e]))=le] for all [e]=D. Now, we can define the
(G, N)g-selector s by

s =s"(@Av])s " (e]),

where [(1] is given by (III. 3). If s(H3%) is topologized
with the (second countable locally compact) group topo-
logy transported from H(G, U(l)d,N) via s, we have then
that ev®, ~, is coutinuous for all g, g’ in G because, by
virtue of (III. 2),

s(lul)=( Ii (mor; v s ”([e]).

The corollary is obviously true also whenn =0, =

(IIL. 3}

Let G,N be as above and let E be a Polish representa-
tion group for (G,N) with splitting projection p. Then,
for each normalized Borel section ¢ associated with p,
the mapping

sotlnlvduDofs  (LeZ5(G,U),,)
is a (G, N),-selector that we say to be defined by o.

Remark 6: The (G,N),-selector s and the Borel
splitting section ¢ of Proposition 5 satisfy ev® =7, and
s =$,. The last relation is proved by noting that, for
each p € Z5(G, U(l),, ),

solud=7(s(u])-eve
because of (II.11}.

Remark T: If, in Proposition 5 and its corollary, G
is a second countable locally compact group, we can re-
place everywhere (in the statements and proofs) “Po-
lish” by “second countable locally compact”.

From the exactness of the inflation~restriction se-
quence (B, 4) (Appendix B), we have at once
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Proposition 6: Let G,N be as in Proposition 5 and
suppose that there exists a topological extension (E, p)
of G by a Polish G-module 4,  such that A separates
points. If H%(E, U(1)s,.,) is trivial, then E is a Polish
splitting group for (G,N).

Proposition T: Let G be a second countable locally
compact group and let N be a closed normal subgroup of
G of index 1 or 2. The existence of a (G,N),-selector s
and of a second countable locally compact group topo-
logy on s(H%) such that ev®,», is continuous for all
g,¢" in G is a necessary and sufficient condition in order
that (G,N) should admit a second countable locally com-
pact representation group,

Proof: The sufficiency of the condition follows at once
from Proposition 5 with the compact open topology on
s(H%)". To prove the necessity, let £ be a second count-
able locally compact representation group for (G,N)
with splitting projection p. Take a normalized Borel
section ¢ associated with p, the (G,N),-selector s, de-
fined by o, and transport on s {H%) the compact open
fopology of (Kerp)A via s,ovp. Then the mapping

Soll]) P evsoge oy (sollu]))
=va(eD(flg,g)

is continuous for all g,¢’ in G because the compact open
topology is finer than that of pointwise convergence.
The resuit follows with s =s,.8

We call s-fopology the second countable locally com-
pact group topology on s(HZB); evSG considered in Prop-
osition T [and determined by the topologies of G and
s(H3)].

Proposition 8: Let G,N be as in Proposition 7, sup-
pose that there exists a second countable locally com-~
pact representation group E for (G,N) with splitting
projection p, let ¢ be any normalized Borel section as-
sociated with p, transport on s (H%) the compact open
topology of (Kerp)™ via s 075, and put on s,(H%) the
compact open topology. Then

(i) There exists a topological group isomorphism Af
of E onto sU(HZB);N ev®sG, equipped with the s,-topology,
such that pryorZ=p.

(ii) If E’ is any other second countable locally com-
pact representation group for (G,N), with splitting pro-
jection p’, there exist fe Z}(G,s,(H% );N) and a topologi-
cal group isomorphism «Z° of E’ onto so(H%);,fG such
that prye«Z =p’, when so(H%)5, /G is equipped with the
unique topology making it into a second countable local-
ly compact representation group for (G,N) with splitting
projection pr, and a Borel splitting section
g (esu(yza)“ag)-

Proof: (i) We have already shown that ev®s, .., is
continuous for all g,g’ in G (Proposition 7) and that
ev°® is Borel {Proposition 5). We define the group
isomorphism AZ by

2 (ao(g)=(B(T(a)),g) (ac Kerp; g<G), (IIL. 4)

where “ denotes the dual mapping and g3, stands for

(s,ovs)™. It is topological because it is Borel (Ref. 3,
Remark 13).
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(ii) Let 0’ be a normalized Borel section associated
with p’, transport on s o.(H%s) the compact open topology
of (Kerp’)"via sy ovp, and endow s (H})5 ev*™ G with
the s, -topology. The mapping

o tSoll]) Fse(n]) (ueZi, U(1),,)

of s.(H%) onto s, (H}) is a topological group isomorphism
(by Ref. 10, Theorem 2.2). Notice that we need only a
very special case of this theorem, sothat the proof of
Moore can be greatly simplified. Indeed, the two topo-
logies transported from s,(H%), s, (H%) onto
H%(G,U(1),,) through s;!, s}, respectively, are
Hausdorff and the corresponding transgression mappings
are topological group isomorphisms. We define

fe Z%(G,SU(HZB);N) by f=1w cev’”; then 1 : (a,g)

F (7,0 (@), £) is a topological group isomorphism of

S (H%),), €7 G onto s,(H});,fG and we have the result
with k¥ =x02Z, where AL is defined by (III, 4) with E’
instead of E and ¢’ instead of o, =

Remark 8: Proposition 8 generalizes Proposition 3.1
of Ref. 10,

IV. APPLICATIONS

We shall now apply the results of Secs. II and III to
three important (nondisjoint) types of Polish groups.
In the following, G shall always denote a Polish group
and N a closed normal subgroup of G of index 1 or 2.

(A) G and N ave such that H%(G, U(l)q,N) is countable.

There exists a fibered Polish representation group
for (G,N), namely the group F(G,N)=s(#});,ev°G con-
structed in Proposition 3 by means of a (G,N)g-selector
s. This is a second countable locally compact (resp.
compact) group if so is G. The Poincaré group {or
the Lorentz group), with its orthochronous subgroup as
N, is an example, 2

The following types (A,;) and (A,) are subtypes of (A):

(A;) G admits a universal covering gvoup G such that
m (G~) (the fundamental group of G) is finile and
HY(G,U(1),) is trivial.

Notice that G is Polish and that, since G is connected,
N=G. We see that G is of type (A) because G is a
splitting group for G (Proposition 6) and, if ps:G—G
is the covering projection, then the discrete group
Kerp, is finite, so that

H%(G, U(1)y) = (Kerpe) /Kertrgl,
is finite.
A compact semisimple connected real Lie group G is
of type (4,). Indeed,

HY(G, U(1)))=m(G)”

(Ref. 21, Corollary 4. 2) is finite and F(G)=G is the
unique representation group for G up to topological
group isomorphisms. Of type (A;) are also the Bondi—
Metzner—Sachs group B (cf. Ref. 22 and references
therein) and the neutral components Py, respectively
L;, of the Poincaré and Lorentz groups. Again, F(B)
[resp. Fy(P;), resp. F (L)} is the universal covering
group of B (resp. of Py, resp. of Ly) and is its unique
representation group up to topological group
isomorphisms.
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(As) G is a second countable compact group (Ref. 23,
Theorem 2.2 and its corollary).

Moreover, in this case H3(G,U(1), ) is a torsion
group (and is finite if, in addition, G 1s a real Lie
group).

(B) G admits a topological extension (E,p) by a Polish
G-module A, such that HUE, U(l)a, o,) and
HY(E,Ul)y,, .,) ave trivial.

It follows from the exactness of the inflation-restric-
tion sequence (B.4) that £ is a Polish representation
group for (G,N), i.e., that

H%(G,U(1)4,) = (Kerp)”

via trgh. A semisimple connected (finite-dimensional)
real Lie group G is then of type (B) (cf. also Ref, 21,
Theorem 4.4), with E =G and p=p¢ (the covering pro-
jection), and Gisa representation group for G which is
the unique second countable locally compact one up to
topological group isomorphisms.

(C) G is an almost connected second countable locally
compact group.

By “almost connected,” we mean that the quotient
group G/GO is compact, where G, is the neutral com-
ponent of G. There exists always a second countable
locally compact splitting group for (G,N) (Ref. 10,
Proposition 2, 2). Furthermore, we have the following
result (Ref. 10, Propositions 2,6 and 2. 7):

Let 2 be the canonical injection of Z into R. In order
that (G, N} admit a second countable locally compact
representation group, it is necessary and sufficient that
Im(75)2 be closed in the finite-dimensional (Ref. 10,
Theorem 1.1) real vector space H3(G,R,,) endowed
with the canonical topology.

Notice that the sufficiency of the condition just stated
follows at once from the corollary to Proposition 5
(taking account of Ref. 10, Theorem 1.2), which shows,
moreover, how a representation group for (G,N) can
then be constructed. Examples are the Galilei group and
its neutral component, %4

If, in particular, G is a connected (finite-dimensional)
real Lie group (and so N=G), it admits a (uniquely
determined) connected and simply connected finite-
dimensional real Lie splitting group (Ref. 21, Theorem
2.1; cf, also Ref. 24) which, however, is not in gen-
eral a representation group. This can be seen in the
case G=T, where T itself is a representation group for
T unique up to topological group isomorphisms, On the
other hand, if G admits a connected real Lie repre-
sentation group E, then the splitting group in question
is E. This is the case when G is, in addition, simply
connected: HZB(G,U(I)O) is a finite-dimensional real vec-
tor space because it is isomorphic to the Chevalley—
Eilenberg cohomology space H*(Lie(G), Q;), where
Lie(G) denotes the Lie algebra of G and the Lie(G)-
module R, is trivial (Ref., 2, Theorems 4.1 and 5. 1),
and (7p)% is a bijection (Ref. 23, Theorem A).

APPENDIX A: QUASIFIBERED EXTENSIONS
Let G be a Hausdorff topological group and let Ay be
a Hausdorif topological G-module. A topological exten-
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sion (E, p) of G by A, is said to be quasifibered if there
exists a normalized section continuous at e, associated
with p (Ref. 14, D&f. 3.2 and Prop. 3.5). If
Ext2F(G,Ay) denotes the subset of Ext,(G,A,) formed
by all equivalence classes of quasifibered extensions
(which becomes an Abelian group with the Baer multi-
plication as law of composition (Ref, 14, Sec. 9), then
we have

Ext,(G,Ay) = Ext?¥(G,Ay)
when G and A are metrizable (Ref. 14, Prop. 3.6).

The cochain complex suited to the study of quasifi-
bered extensions of G by Ay is the subcomplex C¥(G,Ay)
of the Eilenberg—MacLane cochain complex C*(G,Ay)
such that, for p >0, C5(G,A,) is the subgroup of all
elements of C*(G,A,) continuous at the neutral element
of G* and, for p <0, C5G,A,)=C?(G,A,). We denote
the relevant groups of C¥(G,A,) by the corresponding
Eilenberg—MacLane symbols with an additional sub-

6E 3y

script e

In analogy with the case of fibered extensions, a
given fc Z4G,A,) is not always a factor set of a quasi-
fibered extension of G by Ay. So, we are led to consider
the elements f of Z%(G,A,) vegular at e¢, i.e., such
that the mapping

gHfe" eV e g)f g g, 8)

of G into A, is continuous at e for all g’ < G. Notice
that, if f is an element of Z%(G,A,) regular at eg, then
every 2-cocycle cohomologous to f modulo B3(G,A,) is
regular at e;. The set

Hy (G, A4) = {{/)(modBYG, Ay)) | f€ Z4(G, Ay)

and f regular at eg}

is a subgroup of H%(G,4,), and we
have the following result of Calabi (Ref. 14, Cor. 3 to
Prop. 9.2):

Proposition A.1: Let G be a Hausdorff topological
group and let A, be a Hausdorff topological G-module,
There exists a group isomorphism

a,:[(E, p)] + [ f modBX(G, Ay))

of ExtF¥F(G,Ay) onto H2,(G,A,), where f is the factor set
of (E, p) defined by a normalized section continuous at
e; associated with p,

It follows from Proposition A.1 that an element f of
Z¥G,A,) is regular at e if and only if it is a factor set
of a quasifibered extension of G by A,,.

Proposition A.2: Let G be a Polish group and let A,
be a Polish G-module fibering over G. Then there exists
a group isomorphism ¥, of H (G, Ay) onto H%(G,A,).

Proof: We have 7, =¥, 00,003, where a,, a,, ¥,
are, respectively, as in Proposition A.1, Ref, 8
(Theorem 2), and Ref. 9 (Proposition 2). The mapping
@, is a group isomorphism by the theorem of
Brown, ¥

Covollary: Let G,Ay be as in Proposition A. 2 and let
f be an element of Z2(G,A,) regular at eg. There exists
heclG,A,) such that foh € Z%(G, A,).

Proof: By reason of Proposition A. 2, we can find k'
€ CY(G,Ay) such that for' € Z4(G,Ay). Moreover, f
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(resp. foh') is the factor set of a topological extension
(E,p) of G by Ay defined by a normalized section ¢ con-
tinuous at e; (resp. by a normalized locally continuous
Borel section ¢’) associated with p, If we define &

e CUG,A,) by h(g)=0'(g)o(g)!, then fh=Ff5h',u

Rewmark: It follows from Proposition A.2 and its
corollary that, for each element f of Z%(G,A,) regular
at e¢, there exists ke CL(G,A,) such that f5h c Z%(G,Ay)
and

Yol f J(modB4(G, Ay ) =[ f6h](modB% (G, Ay)).

Furthermore, if f,,f, are in Z4(G,A,) and [£;]
=[7£,1(modB%(G,A,)), then we have [ f;]
=[f,(modB%(G, A,)).

APPENDIX B: ON THE INFLATION-
RESTRICTION SEQUENCE

Let & be a Polish group, let By be a Polish G-module,
let (E, p) be a topological extension of G by a Polish G-
module A,, and let 0 be a normalized Borel section as-
sociated with p. We denote by ¥, the topological opera-
tion ¥op of E on B and notice that ¥,[A is trivial. Re-
member that, for Polish groups, Borel 1-cocycles are
continuous. The group HL(A,BO) is identified, as usual,
with Z!(4, B,), and then H.(A, B,)° is the subgroup of all
elements k€ ZL(A, B,) satisfying the condition

¥(ghia)=h{P(ga)

for all g< G and all ac A. The following group homo-
morphisms are particular cases of those (called,
respectively, inflation, restriction, and transgression)
of homological algebra.

(1) inf3: H3(G, By) —~ H3(E, By,) (n =1,2), deduced from

the group homomorphism f+ fop” of Z3(G, By) into
Z;(E,B\I,p) by passing to the quotients.

(B1)

(2) resl: HU(E, By,)—~ H (A, By)°, deduced from the
group homomorpmsm hehlA of ZUE, By, ) into
ZYA, By)® by passing to the quotients. Notlce that 2 1A
satisfies {B1) on account of the cocycle identity for #.

(3) trgy: Hy(A, By)® — H}(G, By), given by trgj(h)
=[hef,], where f, is the factor set of (E,p) defined by
0. We have hof, < Z}(G, By) because # satisfies (B1),
and it is obvious that trg; does not depend on the choice
of the Borel section o,

Proposition B.1: Let G be a Polish group, let B, be a
Polish G-module, and let (E, p) be a topological exten-
sion of G by a Polish G-module A,. Then the sequence
of groups

1 1
1~ H(G, By) ™% H(E, By ) ™3 H(A, B,)°
(B2)
1 2
% HY(G, By) b HNE, B, ),

[the inflation-restriction sequence for (E, G, p; By)] is
exact,

Proof: We shall not consider the sequence (B2) in its
natural context, namely that of spectral sequences, but
merely check exactness at each joint. Let o be a nor-
malized Borel section associated with p.
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(a) Exactness at HL(G, B,): If [h]e Kerinfl, there
exists b € B such that, for eachx< E, h{p(x))
=b (T (px))b), i.e., he BYG, By).

(b) Exactness at H(E, By ) heZYG,B,), then
(hep)a)=ep for allac A, g0 that Iminf} C Kerresi. On
the other hand, if [h]c Ker res}, then h(a) =eg and
hlao(g)) :h(U(g)) for all a€ A and all g< G. It follows
that hoacZ (G, By) and infi((ho0]) =[n], whence
Ker res) C Iminfl,

(c) Exactness at H (A, B,)¢: Let he ZL(E, B, ) and put
hlA=1. From the cocycle identity, we obtain [ f
= §(ho0); hence

trg; (resh((2])) = trgh(D)=[1 -]

is the neutral element of H3(G, By) and thus Imres}

C Ker trgl. 1f now [ denotes an arbitrary element of
Ker trg), there exists h’c Cl(G,B,) such that lof, =5k,
We define a Borel mapping & of £ into B by

hlao(g)=la)h'(g) (acA; g€G)

(Ref. 19, Chap. 1. Sec. 6, Proposition 4) and check that
he Z(E,By). As resi(h])=1, we have Ker trg}
< Imres),

(d) Exactness at Hi(G, By):If he CLHE, B‘”p) is such
that il Ac HYA, B.)¢ and hlac(g)) =R(a)h(o(g)) for all
ac A and all g= G, then

shlao(g), a'o(g)) =h(f(g,g" N o(ho0)g,g")

for all @,a’ in A and all g,g’ in G [the “6” to the left-
(resp. to the right-) hand side of (B3) denotes the co-
boundary operator of C¥(E, By ) (resp, of C*(G,Bw))J.
Now let [ be an arbitrary element of H{A, B ) and de-
fine a Borel mapping i of E into B by Iz(ao(b ) ={a)!
{a<A; g<G). It follows from (B3) that infy(trgh()) is
the neutral element of Hi(E, B, ) and thus Im trg!

C Kerinf}. Conversely, if [f]c Ker inf, there exists
he CUE, By, ) such that fop® = 6k. Since i satisfies
the conditions stated above, we have trg,,( h 1AYY =[7]
by virtue of (B3); hence Ker inf? < Im trg;.

(B3)

If G and A are second countable locally compact
groups, Proposition B.1 is a particular case of a result
of Moore (Ref. 23, Chap, 1,5).

Taking account of Ref. 9, Proposition 2 and of (IL. 3),
we have the following result, where the “B mappings”
are defined in an obvious way and @Np: Dyop.

Covollary: Let G be a Polish group, let N be a closed
normal subgroup of G of index 1 or 2, and let (E,p) be a
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topological extension of G by a Polish G-module 4,
Then the inflation-restriction sequence

1 resl =
1= HYG, Ull),,) BB HUE, U(l),, ) 5 A
trely g2
T8 H5(G, U(l),,)

i} yL(E, UlLs, ) (B4)

is exact.

Remark: The corollary is obviously still valid if,
instead of U(l)q,N, we have a Polish G-module By fiber-
ing over G and, instead of AwN, a Polish G-module 4,
provided A is replaced by Hi(4, By)°.

'E. Wigner, Ann. Math, 40, 149—204 (1939),

2y, Bargmann, Ann. Math, 59, 1—46 (1954),

U, Cattaneo, Rep. Math, Phys, 9, 31—53 (1976).

H, Weyl, The Theovy of Groups aml Quantum Mechanics
(Dover, New York, 1950),

%G, W. Mackey, Acta Math. 99, 265—311 (1958),

63, Schur, Z. Reine Angew. Math. 127, 20—50 (1904).

'J, Schur, Z, Reine Angew, Math. 132, 85=~137 (1907);

139, 155250 (1911),

8U. Cattaneo and A, Janner, J, Math, Phys, 15, 1155—65
(1974),

®U. Cattaneo, Rep. Math, Phys, 12, 77—84 (1977).

¢, c, Moore, Trans, Am. Math. Soc, 113, 64—86 (1964),

Uy, Janssen, J, Math. Phys. 13, 342—51 (1972).

7k, Yamazaki, J, Fac, Sci, Univ, Tokyo, Sec, 1, 10, 147—
95 (1963/64).

1S, Eilenberg and S. MacLane, Ann, Math, 43, 757—831
(1942),

Y1,, Calabi, Ann. Mat. Pura Appl, 32, 295370 (1951).

15N, Bourbaki, Théories spectvales, Chaps, 1 and 2, ASI 1332
(Hermann, Paris, 1967).

16g, M, Alfsen and P. Holm, Math. Scand, 10, 127—36 (1962).

1P, Holm, Math, Ann. 156, 34—46 (1964),

18N, Bourbaki, Topologic généraie II, new ed, (Hermann,
Paris, 1974), Chaps. 5-10.

193, Hoffmann-Jdrgensen, The Theory of Analytic Spaces,
Various Publication Series No, 10, University of Aarhus
(1970).

20y, Cattaneo, “The Quantum Mechanical Poincaré and Galilei
Groups,” J. Math. Phys. 19 (to be published).

21G, Hochschild, Ann, Math, 54, 96—109 (1951).

227, Cattaneo, ‘“Continuous Unitary Projective Representations
of Polish Groups: The BMS-Group” in Gvoup Theoretical
Methods in Physics, Lecture Notes in Physics 50, edited by
A, Janner, T, Janssen, and M., Boon (Springer, Berlin,
19786),

%0, C, Moore, Trans. Am. Math, Soc, 113, 40—63 (1964},

23 F, Cariffena and M, Santander, J. Math, Phys, 16,
1416=20 (1975).

%1, G, Brown, Pacific J, Math, 39, 71—8 (1971),

U. Cattaneo 460



Inequalities and uncertainty principles

William G. Faris

Department of Mathematics and Program in Applied Mathematics, University of Arizona, Tucson,

Arizona 85721
(Received 28 July 1977)

Sobolev inequalities give lower bounds for quantum mechanical Hamiltonians. These inequalities are
derived from commutator inequalities related to the Heisenberg uncertainty principle.

1. INTRODUCTION

This article is an attempt to bring together and sur-
vey various results that generalize and improve on the
Heisenberg uncertainty principle. These results might
be called local uncertainty principles, since they say
that when the momentum uncertainty is small, not only
is the position uncertainty large, but the probability of
being localized at any particular point is very small.,
This information is useful for obtaining lower bounds to
quantum mechanical Hamiltonians.

The more elementary local uncertainty principles are
consequences of a general commutator inequality. This
derivation, which uses only the most basic principles of
quantum mechanics, shows why the inequalities depend
so crucially on the dimension of space. The most power-
ful local uncertainty principle, the Sobolev inequality,
is shown to be a consequence of one of these elementary
principles. The utility of Sobolev inequalities in quan-
tum mechanics is of course well known; 12 the purpose
is to clarify their physical meaning.

The hydrogen atom provides an illustration of the point
of view. The Hamiltonian is H =p*/(2m) - €*/», where
m and e are the mass and charge of the electron, and
v is its distance from the nucleus. The expectation of
H in a particular state is

Hy =(pPy/2m — XY,

If this is bounded below independently of the state, we
have a lower bound for H.

(1.1

It is clear that

Erty < OB /2m + (met/2) { B /(p). (1.2)
Thus it is sufficient to get a lower bound for -~ (me*/2)
X(r 12 /(p*), thatis, a lower bound for (p?1/2(»1)-!, The
ordinary Heisenberg uncertainty principle, in #-dimen-
sional space, gives (pH'/2(4) 2> ni/2, where 7 is
Planck’s constant (rationalized). If it were true in gen-
eral that (*)!/? <(»)-!_ this would give the lower bound
- (me*/21")(2/n)*. However it is not difficult to imagine
states where this fails; the probability is too concen-
trated near =0, and (r‘l) can become exceedingly
large. In fact the argument must be wrong, since the
conclusion is so spectacularly false for n=1. The
Hamiltonian in one dimension is not even bounded below.

There is a local uncertainty principle that does make
the argument work, namely

P2 s (= Di/2. (1.3)
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This inequality says that the state cannot be too concen-
trated near v =0 without forcing a large kinetic energy.
Since it is always true that (»"% < () < (V*)'/%, the in-
equality is qualitatively stronger than the Heisenberg
uncertainty principle. In fact, it is enough to give the
correct lower bound

Hy= - (me*/217) /[2/(n - 1)*]. (1.4)

The rest of this article contains progressively
stronger results, Section 2 has the abstract commuta-
tor inequalities and Secs. 3 and 4 apply these to one-
and n~-dimensional systems. The strong forms of the
local uncertainty principle are valid only for »> 3; this
is why weak short range potentials do not have negative
energy bound states for »> 3. Section 5 has the deriva-
tion of Sobolev inequalities. Finally, Sec. 6 contains a
brief survey of some recent developments related to
these inequalities.

This article had its origin in lectures given to the
participants at the Third International Conference on
Group Theory in Physics, held at the CNRS in
Marseille in June 1974. 1 am indebted to Richard Lavine
for advice about commutator estimates,

2. COMMUTATOR INEQUALITIES

In general unbounded observables may not be added
and multiplied freely, because of possible ambiguities,
such as = - =, We shall mainly deal with situations
where these problems do not arise. We also assume
that the adjoint satisfies the usual relations A** =A,
(A+ B)* =A* + B*, (AB)* =B*A*, The real observables
are those satisfying A =A*, The positive ones are of
the form A*A. The expectation of A in a fixed state is
written (A). The expectation is linear in 4. In addition
it is positive: A= 0 implies {4) > 0, and normalized so
(H=1,

If we use these properties to compute 0 < ((A - {B)*
X (A - iB)) =(A*A) - i{A*¥B ~ B*A) +(B*B), we obtain the
basic commutator bound

{A*B = B¥A) < (A*A) + (B*B), (2.1)

This inequality is called a commutator bound because

when A and B are real it involves the commutator AB
- BA,

If we apply the commutator bound to A{A*A4)-1/% and
B(B*B)/% we obtain i(A*B - B*A) < 2(A*AY /A B*B)1 /2,
If we apply this in turn to a suitable complex multiple
of A, we arrive at the Schwarz inequality

[(A*B)| < (A*AY/2(B*B)!/?, (2.2)
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One simple consequence of the Schwartz inequality
is worth noting. I ¥ >0, set A=Y"/? and B=Y"/?,
Then we obtain the inequality of the harmonic mean,

(Y4t <({y). (2.3)

Our estimates will come from when the left-hand side
of the commutator bound is positive. If B is real, and
if exp(-iaA/%) is defined for a> 0, we may define B(a)
= expliad*/f Bexp(~iaA/%). In general we do not wish
to assume that 4 =A%, so the evolution that sends B
into B{a) need not preserve the algebraic operations. In
any case, the value of dB(a)/da at a=0 is (i/M(A*B
- BA). Thus (i/#){(A*B - BA) is positive when (B(a)) is
increasing with a. So we look for positive commutators
by looking for some observable B that is increasing un-
der some evolution.

3. ONE-DIMENSIONAL SYSTEMS

Quanfum mechanics in one dimension is based on the
commutation relation pg - gp = ~ %, where ¢ and p are
the position and momentum observables, and 7> 0 is
constant. The Schwarz inequality gives /2 < (pz)“2

X (g% for any state. If we replace p by p—{p) and ¢
by q - {q), the same argument works and gives the
Heisenberg uncertainty principle

ApBg > Ti/2. (3.1)

The following local uncertainty principle is an attempt
to improve on this.

Local uncertainty principle: Let a be any point and b
any positive number. Then for every state

Protf|q—-al <b}<2b8p/n. (3.2)

Proof: It is easy to see that pg* — ¢"p ==~ itikg""! and
hence that po(g) - ¢(g)p = - ifip’(g). Thus by the Schwarz
inequality

"o (@) =207 Ko (ah' 2. (3.3)

Apply this to ¢{g) =(2/7)arctan({g - x)/¢}. Since ¢ (g}!
<1, this gives

10e(g - x)) < (P72, (3.4)
where 3,(t) = (1/me/(t* + €%) is an approximate delta func-
tion. Let x(#) =1 where || <& and x(¢) =0 elsewhere.

Integrate the last inequality over [x[ < b and let € -~ 0.
We obtain

nProb|q|< bf =mx(q)) < 26(pH72,

If we replace p and ¢ by p — {p) and ¢ — a we arrive at
the local uncertainty principle.

Let us see in what sense this is a more powerful re-
sult than the Heisenberg uncertainty principle. We know
from the elementary Chebyshev inequality that

Probf|g - (g)] = b} < (8g/b)". (3.5)

Combine this with the local uncertainty principle. This
gives

(1= 20ap/1) < (aq/b)%, (3.6)
Choose b =17/(44p), We obtain
1< (aagap/n)P. (3.7
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This is not quite the Heisenberg uncertainty principle,
because the constant is wrong. But it is qualitatively
an inequality of the same kind. The point is that it is
difficult to imagine that one could reverse the argument
and derive something like the local principle from the
Heisenberg principle.

The local uncertainty principle is relevant to the
question of lower bounds. For instance, consider a
one-dimensional Hamiltonian H :;)2/2m +2{g), where
oty = [lo(x) ldx <=, It follows from the proof of the
local uncertainty principle that

[olg) | <llolh @D/ R

<{p?/(@2m) + milolll/(2r?). (3.8)

Hence

Hy =B /2m + w(g) = — mllwld/ (2R, (3. 9)

Even though » need not be bounded below, the total
Hamiltonian is bounded below by a constant that depends
on 7.

4. n-DIMENSIONAL SYSTEMS

We are mainly interested in inequalities for three-
dimensional systems, but it is worthwhile to derive
them for all dimensions » simultaneously. This helps
to point out what is special about n=3.

UA=(4,...,4,) and B=(By, ..., B,) are vectors of
observables, we write A+ B=(4,+B;,...,4,+B) and
AB=ABy+---+A B, The expectation of A is the vec-
tor (4)=({AD), ..., {A)) and we write (A4)* = (4 - (A)).

Quantum mechanics in # dimensions concerns position
and momentum observables ¢={(qy, ..., q,) and p
=(p1, ..., P, satistying p;q, — prq; = — i0y;/. Since n#/2
< ApyAgy + - -+ Ap,Ag, < ApAg, the Heisenberg uncer-
tainty principle in » dimensions is

ApAg = nl/2, 4.1

We wish to decompose p2 into radial and angular parts.
The angular momenfum in the jk plane is Jy, =gq;p
— gxp;. The total angular momentum is J =Y, ;adiz- The
angular momentum observables all commute with ¢°.
Thus it is easy to compute that

G =5 5 N
ik
= % (kajq-z(ijk -~ pkqjqnz(thj)
J
=p* - pagqp.
Thus we have the decomposition
P =paqqp +q7J.

Note that pg — gp = - in¥i, so pq and gp differ only by a
constant.

(4.2)

Since the expression for the radial part of p2 involves
the term q'z, which is singular at the origin, we must
pause to examine when manipulations with such singular
terms are justified. For this it is necessary to look
more closely at the representation of the observables
as operators.
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When the observables are represented as operators
acting in a Hilbert space, the states are given by unit
vectors #. The expectation (4) = (¢, A¢) is given by the
inner product. In the Schrédinger representation the
Hilbert space is a space L? of square integrable func-
tions on R". Then p; and g, are given by — i#3/3x; and
py multiplication by ¥,. It is easy to check that p%, ¢°,
and gp are given by —~ ra, multiplication by xz, and
— i3/ v,

Many of our estimates will not be valid for n=1. The
reason is that when # =1 a point has a nonzero capacity
and cannot be ignored in the manipulations. However
for n> 2 a point has zero capacity and is thus negligible.

Zeyo Capacity Pyinciple: If n= 2, then all functions
¥ in L with finite kinetic energy (¥, »t ¥» may be approxi-
mated arbitrarily closely in kinetic energy by functions
which vanish near some fixed point.

Proof: Consider the Hilbert space of all ¢ with
(@, (p* + 1)y) <=, In order to show that the y which vanish
near the origin are dense in this gpace, it is sufficient
to show that the only vector ¢ orthogonal to these ¥ is
the zero vector.

Assume that (¢, (p* + 1)¢) = 0 for all such $. Then
u=(p*+1)¢ is a distribution that vanishes except at
the origin. Furthermore, ((p* + 1t ) = (¢, (p* + D)
< e_ But any distribution supported at a point must be
a linear combination of Dirac delta measures and their
derivatives. We can thus compute ((p° + 1), u) by
Fourier transformation and observe that this is finite
only when n =1 and # is a multiple of a delta measure,
or when # =0, Thus for #> 2, #=0 and so ¢ =0 as well.

The above proof may be interpreted as saying that the
capacity of a point to support a distribution « with
{(p* +1)"', uy <= is zero when n> 2. The result shows
that when » > 2 we may always calculate with wavefunc-~
tions that vanish near the point of singularity. The
estimate then extends by continuity to all states with
finite kinetic energy.

We now turn to calculations. It is important to note
that the radial part of p* may be factored in two ways.
In fact, we may commute q'z past gp and pg=gqp — ink
to obtain

paqap =q(pq +2imgp

=q qp(pq + 28 =g qpg’paq™.

If we write » = (g%)/?

par ™ lap) = (gpr)(rpar). (4.3)

We now use the basic commutator bound. We insert
the two factorizations in turn, first with A =»"gp and
second with 4 :T/)qr'z. In both cases A*A is the radial
part of p°, in particular (A*A) < (p®). We choose B
=¢(q), where ¢ is a real function. The result of the
calculation is

i(A*B ~ BA) = W30 (q)/ 07 + vy (g)],

, this becomes

(4. 4)

where ¥ =n -1 in the first case and 3 - » in the second
case. The commutator bound and the zero capacity prin-
ciple thus give a general inequality.

Commutator Inequality: Let n>2 and v=n-1 or
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3-un. Let ¢ be a real function that is sufficiently differ-
entiable and has no singularities except at the origin.
Then in any state

wad(g)/ar +vriple) - (o (@)D < D).

One special case deserves more detail. Take A:r'lqp
and B=87"!, where 8 is a constant. The commutator
identity

A*A _j(A*B ~ B*A) + B*B= (A - iB*(A ~ iB)

(4.5)

gives
parqp - ln =217~ + 872 = (pg + i)y v gp - iB).
When 8 =[(n - 2)/2]% this becomes
parap - ((n~2)/ 2ty = v DM, (4.6)

where D =(pq +gp)/2 is the dilation generator, Since
(»*'D*»y = 0, we have in particular the well-known
1/%* bound

PO 2y = [(n - 2)/ 215,

a local uncertainty principle valid for n= 3.

(4.7

The behavior of the probabilities is thus different
when n > 3, The probability of being in a ball of radius
b depends quadratically on b.

Quadratic Local Uncertainty Principle: In dimensions
n= 3, there is a constant ¢ such that in any state

Prob{|q - a| <8} <c(bap/n). (4.8)

Proof: Let x{g) =1 when lg| < b and 0 otherwise.
Since x(g)57 < ¢, the 1/# bound gives

X(gNbP<a/(n=2) 2/

Since p —{p) and ¢ - a could have been used in place of
p and ¢, this gives the result, The constant ¢ =4/
(n-2)%.

An alternative proof gives a sharper constant in di-
mension » = 3. This argument is due to Lavine.

Proof: We use the second factorization corresponding
to v=3-n. When n=3 or when n> 4 and ¢ is negative,
this gives

(Hog(q)/3r — (g)?) < (p*. (4.9)
Insert ¢(x) = - #{n/(28)] cot{nr/(2b)) for ¥ <b, 0 else-
where. Since csc? - cot’ =1, the result is

7 (n/20)%x(q)) < (p?).
This time the constant ¢ =4/7%,

The quadratic local uncertainty principle is obviously
false for n=1. It is less obvious that it is also false
for n =2. To see this, take ¥ to be a radial function that
behaves like loglog(1/7) near the origin and is nice else-
where. The expectation (¢, p%¢) is proportional to {33/27,
3¢/3%). Furthermore, since 3%/37=(r logr)™! near the
origin, the integral behaves like 27 [, (logr)* dr =27
X [(Qogr)? d(logr), which is finite near »=0. On the
other hand, Prob{» < b}=2n[>|y}®»d» cannot be bounded
by a multiple of 5%, since ¥ is unbounded.

In this example the singularity of ¢ is rather mild.
This is the general sitwation, since there is a true in-
equality that is only slightly weaker.?
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The exact bound for the hydrogen atom problem is
also a consequence of the commutator estimates. Use
the first factorization, so that v=»n-1, and take B=8,
a constant. This gives the 1/# bound

F(n — 1)B (1) - 8% < (p?), (4.10)

If we take B :([)2>1/2 we get the local uncertainty prin-
ciple (1.3), Or we can take 8 =2me®/[(n — 1)#] and obtain
the lower bound (1. 4) directly.

We can also obtain the ground state. The commutator
bound is an equality precisely when II{A - iB)yi® =0,
that is Ay =iBy. In our application this says that in the
Schrddinger representation — ih‘azp/arziﬂw. The solution
of this is ¢ = Cexp(- B»/%). Since the lower bound is
assumed when 8 =2me?/[(n - 1)%], the Bohr radius #/B
in # dimensions is (7*/met)(n - 1)/2.

5. SOBOLEV INEQUALITIES

Let p be a real number with 1 <p<, If ¥ is a com-
plex function such that [ ¢(x)|1?dx <, ¥ will be said to
belong to L. The L* norm of ¢ is defined by nyi,
=([1p(x) 12 ax) />,

There is a useful generalization of this notion that is
somewhat less known, We say that ¥ is in weak L? if
there is a constant M such that for all s > 0 the volume
of the set where |91 > s is bounded by (M/s)*, The least
such M is denoted 1y1}. It is easy to see that if ¢ is in
L?  then it is in weak L” and 11!} < 1ipl,. We need only
observe that 1915 = [, l¢(x) I?dy> s?vol(lyl >s), On
the other hand, in » dimensions »™/? is in weak L? but
not in L?,

In the following we write $2, for the volume of the ball
of radius 1. The general formula in » dimensions is
Q=" /T((n/2) +1).

Stvichavtz Inequality**®: Let n> 3, Then there is a
constant C such that for every function v

Kolg)y | < Clioll¥ 2% /7. (5.1
This inequality may be deduced from the 1/%* bound

by rearrangement. We save the proof for later. The

proof will give the constant C=[4/(n - 2)*12;%/*. (This

is best possible.) The Sobolev inequality is obtained as

a corollary by replacing weak L? by L?,

Sobolev Inequalitv®™: Let n> 3. Then there is a con-
stant C such that for every function v

(@) | < Cllvll, 2% /7. (5.2)

The constant C in the Sobolev inequality thus certainly
does not exceed the constant C in the Strichartz inequal-
ity. However this is not the smallest possible constant,
since the Sobolev inequality was derived here as a corol-
lary of a rather different inequality. The sharpest con-
stant is actually C=1/[mnn - 2)J[T ()/T(n/2)*/".°
Notice that if we set v = |¢|"*%, where 1/7=3% -1/, the
inequality becomes the classic Sobolev inequality

112 < C (Y, puy/BE. (5.3)

Thus it says that ¥ is in L" and hence cannot be too
peaked.
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The most interesting consequence of the Sobolev in-
equality is the no-binding theorem, which says that if
n= 3, then a weak short-range potential v won’t bind a
quantum mechanical particle to make a state of strictly
negative total energy. Weak and short range means here
that the L"/? norm of v is small. More general criteria
may be given, ® but this norm has the appeal of being
translation invariant. In addition, it often gives fairly
good numerical results.®

No binding theorem: Let n> 3 and let v be a real func-
tion on R". H (2mCilvl,,3)"/*/H < 1, then in any state

H) =" /2m) + (@) > 0.

Proof: Apply Sobolev’s inequality. Thus if 2mCllvl,,,,/
<1, then in any state

(@) = p*/2m).

Consider as an example the case n=3. The Yukawa
potential v(x) = - g exp{— k¥) /7 is in L*/?, Thus if £ is
small the Yukawa potential won’t bind. The Coulomb
potential v(x) = - %/7 is not in L*/?, but it is the sum
of a singular part in L¥? and a long range part which
is bounded. For such potentials the inequality gives a
lower bound.

Lower Bound Theovem: Let n> 3 and let v be a real
function that is the sum of a function in L"/? and a func-
tion that is bounded below. Then the Hamiltonian H
=p*/2m +v(g) is bounded below.

Pyoof: Write v =v, +v;, where v,=v where v> —k
and v, =0 elsewhere. If % is sufficiently large, then
v4 is in L"/? with arbitrarily small norm. Thus if % is
large enough so that v, won’t bind, then

(Hy = (p*/2m +v{(q)) +{va(g)) = ~ k.

On can also deduce lower bounds directly from the
Sobolev inequality. It follows from the integral repre-
sentation of fractional powers! that when 0< o < 1 the
inequality 0 <(B) < {A) for all states implies the inequal-
ity 0 < (B*) <(A%) for all states. Let »>n/2 and apply
this with @ =»/(27) to the Sobolev inequality. This gives

ol |y < CH ol %y /122 .

Replace lvl by l21'/* and use the estimate®® (p**)
<{p™*. We arrive at the general result

()| < CHlIvllpB* /72, (5.4)

where o =#/(27) and » >n/2, n> 3. This uncertainty
principle gives a lower bound on H=p"/2m +2(g) in
terms of lwi,. Notice that it does not give a no-binding
result, since the fractional power leads only to an in-
homogeneous estimate for (p?).

There is however another no-binding result that is
a consequence of the quadratic local uncertainty prin-
ciple and rearrangement. Assume n> 3. Let v be bound-
ed with |»| < M and assume that v =0 except on a set §
of volume 2,0". The result says that

[{w(g)) | < (4/m) MDY P> /7. (5.5)
As a consequence, if (4/7%)QmMb? /1) <1, then (H)
={pt/2m) + (v()) > 0 in every state.
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The proofs that have been deferred until now are
based on the notion of rearrangement, '’ We assume that
x is a positive function that approaches zero at infinity
in the sense that for s >0, vo}{s <x}<», Here we write
{s <} for {x:5 <x(x)}. The function ¥ may be decom-
posed in slices as

x=J, s Lisenr- (5.6)
In this expression 1, is the function that is 1 on the set
M and 0 elsewhere, s0 1j.;(x)=1 precisely when s
<x(x). The rearrangement X of x is defined as the po-
sitive function given by

X~:‘fomds 1{S<x~)’ (5. 7)
where by definition{s <x } is a ball centered at the ori-
gin with the same volume as {s < x}.

Lemma 1:

Sxpaxs [x™y7ax. (5.8)
Pvoof: Use the decompositions x = [~ ds 1{s¢; and
$=[o" df 1(3¢;- The volume where s <x and /< is the
volume of an intersection of two sets. On the other hand,
the sets s <y~ and # < §™~ are both balls centered at the
origin, so the volume wheres <X~ and < ¢~ is the vol-
ume of one of the two sets. But the volume of an inter-
section is always smaller than the volume of either set.

Lemma 2: The function x is in weak L? if and only if
its rearrangement x~ satisfies

(5.9

Proof: Clearly x is in weak L? if and only if ¥~ is.
But x~ is in weak L? if and only if {s <x"} is contained
in the ball of volume (ix1¥/s)? for all s, This, however,
is precisely the ball {s < Q;'/?ix¥»/*}, Thus by de-
composing X~ into slices we see that X™ is in weak L
if and only if X~ < Q; #uxupy/?,

x = Q;“”IIXH;‘W‘"/’.

The following is the crucial lemma.

Lemma 3

[lox~|*ar< [|vx|*dx. (5.10)
Pyvoof: We show that this holds true on each shell
where the functions have values between s and s +ds.

First, {s<x <s+ds} is a shell of width | Vx|=ds. Its
volume is fy.¢| VX! ™ dsdo, where the integration is over
surface area. On the other hand, {s <x~<s+ds}is a
spherical shell of constant width IV)FI'1 ds. Its volume
is |vx~1'ds 5, where T is the area of the sphere. Since
by definition of rearrangement the two volumes are
equal,

foN"de(?:fX=s|Vx(‘1dsdo. (5.11)

Second, since (again by the definition of rearrange-
ment) the volumes of {s <x} and{s <x™} are the same,
the isoperimetric equality says that the area of the

sphere is smaller than the area of the other surface.
That is,
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(5.12)

We can use these two facts to estimate

/{s«~<ms;lvx~]2dx: {VX~|5'(IS

—(Jeutoxl o) " 22as
s(ﬁ:s[vx]-l ?>-lods. (5.13)

We can now complete the proof by using the inequality
of the harmonic mean to show that this is bounded by

(fetoxi@)oas= [ [wefa.
a {sX<seds)

Proof of the Strichavtz inequality: Set X = 14| and put
these lemmas together. By Lemma 1,

(5.14)

[olp|taxs [ |u|ldes [|o] X ax. (5.15)
By Lemma 2,

Sl X Pax <R mollf . [ rixtax. (5.16)
The 1/7 bound gives

[rixtax<a/(n-2) [|vx~|*ax. (5.17)
Finally, by Lemma 3

[lox~[tax< [ |vx|tax < [|vp|*ax. (5.18)

This completes the proof.
The other no-binding result may be proved the same
way, using
[lvhar <livllo fx dx < llvlla [ x™ dx, (5.19)
where B is a ball of radius & centered at the origin.
Then by the quadratic local uncertainty principle

Jo xFax<(a/m) [ |vx™|*ax, (5.20)

The proof is completed in the same way.

6. SURVEY OF RELATED RESULTS
(1) Bound states

One consequence of the Sobolev inequality is that if
n=3 and Cmlivll, 5)"/* 7" is sufficiently small, then
% /2m +vlg) has no strictly negative eigenvalues. In the
classical limit 77— 0 the number of such eigenvalues is
asymptotically 2,(2mivil, ;)" 227%™, 12 Recently Lieb'
and Cwikel have shown that if » > 3 the number is
bounded by a multiple of the classical expression.

(ii) Scattering

In the present treatment positive commutators have
been used to determine behavior in space. However they
may also be used to analyze time development. Lavine®®
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has recently found estimates on the rate of barrier pene-
tration by these methods.

(iii} Matter

Dyson and Lenard showed rigorously that the energy
per particle in bulk matter is bounded below. Their
arguments have three ingredients: positivity of the inte-
gral operator given by 1/1x - v|, the exclusion principle
for the fermions, and some sort of local uncertainty
principle. Recently Lieb'® and Thirring have made a sub-
stantial improvement on the lower bound. The technique
uses Sobolev type inequalities'®? for many-fermion
Systems.

(iv) Entropy

Consider a quantum mechanical particle in some
tixed state. Let p and o be the position and momentum
probability densities and S{g) =~ [p logp dx and S(p)
=~ [ologodp be the position and momentum entropies.
Beckner'® recently proved a theorem on Fourier trans-
forms that extends results of Nelson and Gross on the
quantum mechanical harmonic oscillator. This theorem
implies'® ! the inequality

exp[S(q) +S(p)]= (emi)™. (6.1)

Entropy becomes negative when the probability distri-
bution is peaked, so the inequality says that position
and momentum cannot both be too peaked.

The entropy always gives a lower bound for certain
expectations. If we integrate the elementary inequality
~plogp+p<~-plogy+ ¢ and assume  is a positive func-
tion normalized so that [¥dx=1, we obtain S(q)
< {~log¥(g)). In the general case when ¢ is not normal-
ized one can apply this to ¥/ [ ¥dx to obtain S{g)
< (= logi(q)) + log[ ¥(x) dx.

The Beckner inequality may thus be rewritten in
terms of expectations of arbitrary functions as

exp{{~ logdlg)) + (- logp MM [ $a) ([ ¢ dp) = (emh)".

(6.2)
If we take ¢ and ¢ to be Gaussian probability densities
with means {g) and {p) and standard deviations A¢ and
Ap_ this becomes

(2me/n)"(Ap)N(Ag) > (eTh)", (6.3)

the Heisenberg uncertainty principle. Thus the entropy
inequality is an uncertainty principle in which each fac-
tor is smaller than the corresponding factor in the
Heisenberg uncertainty principle, yet where the product
has the same lower bound.

Consider the harmonic oscillator Hamiltonian H =p*/
2m + mwzqz/z —nliw/2 and let po(x) = (w#i/ mw) ™
X exp(~ mwx? /) and oy(p) = (Mhimw)™'* expl- p*/(mwh)]
be the Gaussian position and momentum probability
densities in its ground state. Set p=hp; and o=jo, and
define entropies Sylg) =~ [k loghpydx and Sy(p) =~ [j
Xlogjo, dp with respect to the ground state. The entropy
inequality becomes

S[)(L]) +S[)([)) b - 2<H>/’ﬁw_

It says that when the energy is low the probabilities re-
semble the ground state probabilities.

{6.4)
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In this form the inequality is independent of dimension
and extends to dimension n ==, The Gaussian measures
podx and oydp are defined as infinite product measures.
The harmonic oscillator Hamiltonian

-1/2

p)*
X (m% wq+im%)

H=4(m'/? wq +im

also makes sense when n ==,

I we set ¥ =fp, and ¢ =go,, the lower bound for en-
tropy takes the form Sy(q) < - {logf(g)) + log{f(q)),, where
the subscript 0 denotes expectation in the ground state.
Note that the choice f=1 gives Sy(g) < 0. We also see
that the inequality is equivalent to

{logfq)) + (loggph
< 2H)/Tiw + logdflg)) s + log{g(p)),.

Nelson's inequality is obtained by setting g=1. If we
then write logf=- 2v/7iw, we obtain

Hy +{e(q)) = = (Fw/2)log{exp(- 2v(q) /Fiw)},.

This shows that even in infinite dimensions a function

v that is unbounded below may still give a total Hamil-
tonian H + 2(q) that is bounded below, provided that
(exp(- 2v(q)/Hiw)y; <=. This fact has been usefu} in quan-
tum field theory.
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On the definition and properties of generalized 3-j symbols

Jacques Raynal
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Whipple’s work on the symmetries of ;F, functions with unit argument is applied to study the properties
of 3-j symbols generalized to any arguments. It turns out that there are twelve sets of ten formulas
(twelve sets of 120 generalized 3-j symbols) which are equivalent in the usual case. Whipple’s parameters
r provide a better description of the symmetries than the Regge symbol.

1. INTRODUCTION

The 3-j symbols, related to the Clebsh-Gordan coeffi-
cients of SU2, are so widely known by physicists that
their notation is sometimes used in the literature to ex-
press quantities which are also generalized hypergeo-
metric functions ,F, with unit argument.’ For example,
it is used for angular momenta which are multiples of
1 in the “tree” theory of hyperspherical harmonicg®?®
or with negative values® for the discrete representations
of SU(1, 1). Clearly, references to SU2 results are made
by these authors to generalize a well-known formalism
to their own problem,

For usual angular momenta, we know Regge’s symme-
tries, extended to the transformation j— -j -1 by
Yuisis. ® The same coefficient can be obtained by differ-
ent expressions which cannot be easily related: This
point is well known as there are Racah’s,” Wigner’s®
etc,, formulas for usual 3-j symbols. But, in the usual
case, all the coefficients of the ,F, functions are inte-
gers whereas some of them can be half-integer in the
hyperspherical formalism.

A systematic study of all the possible formulas and
the conditions of their validity has not been performed
until now (at least, does not appear in the most com-
plete monographies on this subject®).

Group theoretical studies lead to integerlike quantum
numbers: integer multiples of ¥ or £. Strictly speaking,
there is no way to perform an “analytical continuation”
to the usual 3-j symbols. Sometimes, the same problem
can be studied in a more pedestrian way, by relations
between special functions: in this approach, some quan-
tum numbers can take any value, even complex, and the
analytical continuation makes sense. After the publica-
tion of an article'® displaying seven different formulas
for the same coefficient, the question arises how many
of them there can be. The importance of this guestion
is illustrated by the fact that the author could find no
relation between his seven formulas and another one
already published, !*

To each  F, with unit argument, 12 generalized 3-j
symbals can be associated by permutation of the three
numerator coefficients and the two denominator coeffi-
clents of the ,F,. If there are n equivalent ,F,, there
are 12X»n equivalent generalized 3-j symbols. There is
no need to consider only the ,F, which are finite sums,
because, if there is only one finite ,F, among the =
equivalent ones, any of the 12X»n equivalent 3-j symbols
can be given by it, Furthermore a ,F, which is an in-
finite sum can be evaluated even, to some extent, when
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it does not converge mathematically, So the symmetry
properties of generalized 3-j coefficients are related to
those of ,F, of unit argument. The finite sums are only
special cases for which the group of symmetry is wider.

The symmetry properties of the ,F, with unit argument
were studied by Whipple'?>~** using a very convenient no-
tation. Whipple’s parameters provide a better repre-
sentation of symmetry properties than the Regge symbol
because this representation includes Yutsis® “mirror”
symmetry® and indicates the breakdown of the usual
rules when the usual relations between quantum numbers
are not fulfilled. Whipple’s work has been already ap-
plied"® to study symmetries and relations between 3-j
coefficients of SU(2) and SU(1, 1) where all the coeffi-
cients of the ,F, functions are integers.

In sec. 2 we shall summarize Whipple’s work. Then
we shall choose a definition for a generalized 3-j sym-
bol; this definition is absolutely arbitrary but reduces
to a usual formula when the arguments fulfill the usual
relations. Whipple’s theory leads to ten equivalent for-
mulas, The existence of a negative integer leads to re-
lations with a series of ten other formulas, but the
existence of more than one negative integer can give
rise to quite complex situations which are summarized
in sec. 5. In sec. 6 we shall consider the inverse prob-
lem: which are the generalized 3-j symbols that a for-
mula can define, To discuss this problem, which can be
seen as symmetry properties or analytical continuation,
we are obliged to discard Yutsis’ phase rules and pro-
pose another convention which is not convenient. Unfor-
tunately there is no simple solution to this problem.

In Appendix A we give a method to check the proper-
ties described here, even if the series diverge. For
completeness, Appendix B gives all the recurrence re-
lations between a generalized 3-7 symbol and two of its
30 neighbors in terms of Whipple’s parameters.

2. RELATIONS BETWEEN ,F,

Whipple introduced six parameters »,—7, such that
their sum is zero and

_1 _
Wy =7 T7 7, F7,, B, =1+v, -7, 1)

With them he defined the functions

1
(0125) T (Bo) T (Bsp)

X, F, [a Lass X245y Xaass Baoy Bsosl],

Fy(0345) =
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1
(@ 045) T {Bos )T (Bos)

X 5F [0‘023, Qoya9 Xo1a5 Bogs Bos;l]'

The function F, (0;45) is derived from £,(0;45) by chang-
ing the sign of all the #’s. By permutation of the suffixes
60 F, and 60 F, are found. If there is no negative integer
in the numerator parameters, these series converge
only if the real part of «,, (or a,,;) is positive.

F,(0545) =

The transformation!®

I(e)L(f)(s)
T(@I'(s+b)I'(s+c)

3F2[a1 b’ C; e,f; 1]:
(3)

X F.le—a,f-a,s;s+b,s+c;1]
with s=e+f~a-b- c can be written F,(0;45) = F,(0;23).

By interchange of a, b, c¢ and use of the transforma-
tion on the results we obtain the ten F,(0;4j). Conse-
quently, among the 120 functions F, and F,, there are
only 12 different ones which can be denoted by F,(i) and
F,(i) for i =0—5. This transformation has been used by
Racah’ and other authors, %1

There is a relation between three of these functions,

sinmp _ F (i)
a0 2 = T, )@,
_ F(5)
F(aizm)r(aim)r(aimn) (4)

where 4, j, k, I, m, nare all different, Changing the
signs of the 7, a relation between F,(k), F,(i), and

F,(j) is obtained. From these relations, a relation be-
tween three F, or F, can be obtained. This set of rela-
tions makes it possible to express any F, or F,as a
linear combination of two of them. They have been used’
in the study of Wigner coefficients for continuous repre-
sentations of SU(1,1).

If one of the ¢, o, ., is a negative integer, the series
which include it terminate; there are 18 of them. These
series can be written in reversed order leading to

L0 )T ) T (@ ) F ()
= (-.)a”""l"(am)r(am) Doy, ) F, (), (5)

where [, m, n are any of the indices of the integer « and
i, j, kare any of the other indices. The relation (5)
which involves 60 functions can be obtained as a parti-
cular case of the relation (4).

3. GENERALIZED 3/ SYMBOLS

The definition of a generalized 3-j symbol is quite
arbitrary. We can choose

(abc
OZBV)
5(a +B+y)

=exp[im(a-b-7)] T(-a+c-B+1)T(-b+c+a+1)

x[r(a+a + 1) =B+ (c+y +DT(c -y +1)
Ta-a+1)T(B+B+1)a+b~c+1)

1"(a—b+c+1)I’(b+c—az+1)j|”2

x T(a+b+c+2)
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X Fol-b-8, —ata, —a-b+c;—a+c-B+1,
—-b+ecta+1;1] 6)
for any complex value of a, b, ¢, @, and 3. However,
the real part of the argument of the I" function in the
square root must be positive in order to define this
square root as the analytical continuation to the positive

value when the imaginary part of a, b, ¢, @, and 3 van-
ishes.

By identifying the ;F, to F,(0;45) we obtain for the
Whipple’s parameters:
7, =18 +6a+2y~26), r,=1(-3-6a+2y-2p),
r,=+(B+6b+2a-2y), 7,=%(-3-6b+2a-2y), (7)
r,=2(3+6c+28-2a), r,=i(-3-6c+23-2a).

The related Regge symbol is

—a+b+c a=-b+c a+tb-c — Qg5 — Ogyq — Ugys
at+a b+8 ctY |=| —Ugaq —0yq5 = Ao
a-a bh-p c-v = Opgs — Upgs =~ Apig

(8)
with a + b+ c=1- 4. All of the & and 3 can be ob-
tained from (8), using @, =1-0a, and 3,,=1+ o,

- a,,; for any value of k and [. We shall consider o,
and the o of the Regge symbol as negativelike and avoid
them as arguments of T" functions. In the following we
shall use {,j, k for any one of the indices 0,4,5 and
I,m,n for any one of 1,2, 3. So, the positivelike o are,

O”lmn and C"ilm"
With this notation
a b ¢
<a 8 7’): explin(r; — 7,)] R,(0)F,(0;45), (9)
where
R2(0) = T(00)25) D@ 10) D006 ) D050 )T (@ 5 ) T (@5 ) T (X 55)
»

I‘(QOY_’.)F(QOLS)F(&()ZB)
(10)

is the product of all the I'(w,,,) with X, &, v #0 where the
T'(a,,,) of negativelike a have been replaced by

r - a,,,)". The definition (9) describes only the 12 3-j
symbols which correspond to the even transformations
of the Regge symbol which do not change the second
diagonal. The other even transformations (even permu-
tations of a, b, ¢) lead to F,(4;05) and F,(5;04). The odd
transformations give F,(1;23), F,(2;13), and F, (3;12).
We shall use the notation

F,(\)=R,M\EF,(),
F,(\) =R,(\)F, (),

RP(X)RH(A) =1,

where R,(\) is defined as £,(0) for 1=1,2,3,4,5. Note
that the numerator of R,(¢} includes seven I' functions

and its denominator only three, and that these figures

are inverted for R,(I).

(11)

The Regge symbol (8) corresponds to six general
3-j symbols which can be expressed with two of them
by the following relations:
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sinm(r, - 7,)F,(0) + sinn(r, — r,)F,(4)

+sinn{r, - 7,)F,(5)=0, (12)

sinn(r, - 7,)F,(l)=sinna,,,F,(0) - sinra,, F,4),

where the F, and F, are the 3-j symbols up to a phase.
But F,(0;45) can be replaced in (9) by any of the nine
other F,(0;xp), leading to ten different formulas. In
other words, among the 120 permutations of 7, 7, 73, 74,
and 7, which lead to other values of q, b, ¢, @, 8,v, per-
mutations of r,, 7,, 7, introduce no change in (9); the
permutation of 7, and 7, changes the phase if 7,-7; is
not an integer, whereas any permutation limited to F,
does not change the value. Extension of the permutation
to R, is related to the symmetries of 3-5 symbols and
will be studied later.

Among these nine other formulas, three are infinite
sums for usual arguments. There are:

1

B ) = o T OT s e pFaTG Fcia+D) (13)

X sFla+b+c+2, b-B+1, a+a+1;a+c
-B+2, b+cta+2;1],

1
I'(-~a+a)T{a+c-B+2)T(2¢c+2)

xsFola+b+c+2, c+v+1, a-b+c+1;a+c
—B+2,2c+2;1], (14)

and F,(0;23) which differs from (14) by the exchange of
a and b and the change of sign for «, g3, y.

F,(0;13) =

The six other formulas are:

1
0' =
F,(0514) IF(c-y+DI(a+c-B+2)(—a+c~p+1)
X3F2[b~6+1, C+7+1, _b-B;a+C‘ﬁ+27
—a+c-p+1;1], (15)
F,(0:15) = 1
P T Tea+bte+DT{atc-B+ 2T (- b+c+a+1)
xiFola+a+1l, acb+c+1l, —b-Ba+c-B+2,
—b+ct+a+1;1], (16)
F,(0;34) = 1

T T{at+ta+ )T 2c+2)T(-a+c-B+1)
xgFole+ry+1, —a+b+c+1, —a-b+c

2c+2, ~a+c-B+1;1] am
and F,(0;25), F,(0;24), and F,(0;35) which differ res-
pectively from (15), (16), and (17) by the same exchange
of @ and b and change of sign for «, ,vy.

These formulas present no interest except for nega-
tive angular momenta. To each of them is related a
Regge symbol including some negative numbers of which
the transformation leads to six new generalized 3-j
symbols corresponding to F,(I) and F,(s). They are not
equal to (6) in the general case. The five other formulas
quoted in Ref. 9 are respectively F,(3;25), F,(2;01),
F,(3;01), F,(0;23), and F,(5;13) with the notation (7);
they describe different generalized 3-j symbols except
for the two F,(3).
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Dixon’s theorem!*! sums the expression (6) when
a=B=0 and gives

(2 ) =emlinta- meos [+, =<]
000

/
X[T(—a+b+c+1\r(a—b+c+1)1"(a+b—c+1)]1 :

L T(a+b+c+2)
y T'[{a+b+¢)/2+1]
Tl(-a+b+c)/2+10[(a=b+¢)/2+1T[(a+b-c)/2+1]

(18)

which generalizes the well known formula to any value
of a, b, and c. They are different results for the other
F,and F,; for example F,(4) and F,{(5) differ from (18)
by the argument of the cosine.

4. EXISTENCE OF ONE INTEGER

There are relations between some F,(A) and F, (1)
when «,,, is a negative integer (or zero) but also when
B,. is an integer. Let us consider this case.

If 8;; is an integer, 7;~7; is also integer and the re-
lations (4) reduce to

F ()= (=) riF (i), F,(j)=F, (). (19)
If 8, is an integer,
Fm)=F,1), F,m)=(-y="1F(0). 20
If 8;, is an integer,
mF, (i) =sinma,, sinta,, F (1), (21)
mF (1) = (=)"i-1isinna,, sinma,, F,).
In the last case
sinwa, sinra,,, =sinra;, sinra
=(-)i"isinna,, sinna,,
=(-)iMisinme, sinva,,,. (22)

For the usual 3-j symbols, »’s are integers plus <,

+, or 2, When, on the contrary all of them are inte-
gers, the o are half-integers and

(=Y mE, (i) =1"F,(1), 7F, (i) =(=)m"aF (1) (23)

but there is no relation between the F, and the F,.

There are only three negativelike @ among the argu-
ments of F,(0) which are a,,;, a4, and a,,, (- b6-8,
-a+ea, and -g-b+¢). If a,, is zero or a negative
integer, relation (5) reads

2 2

— s — big —
- SR — T
F,0 sinnalz4sinnalst’(2) SinTo ,,SinTQ 4 )
8L (1 L8 -
= (PR, 1) = sinra,, sinn(y, - 74)F"(4)
w? —
~ sinmag,,sina(y, - 75)F"(5). (24)

If any other «,,, is a negative integer, a similar rela-
tion can be obtained by a permutation of indices. How-
ever, if o, is a negative integer the relation is

F (1) =F,(2) =F,(3) = (-)%0sF (0) = (=) ®05F (4)

=(=)%ssF,(5). (25)
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Relation (24) holds as long as the sines do not vanish.
If there are other integers among the @, we need a more
careful study. Relation (24) provides 60 equivalent for-
mulas to compute expression (6), but there are still six
other groups of ten expressions which are independent.
The three term relations (4) are such that these six
other F‘p or F,, cannot be expressed only with those
bound by relation (24).

When relations (24) are used, some unwanted I' func-
tions appear in the denominator for Fp(l) and Fn (#); two
of them can be inverted, introducing two other sines
which cancel those of relation (24) in some cases. In
particular, when b+ 8 or a—a is an integer, from
F,(3;45), we get

(abC)
a By

F(a+c+6+1)F(b+c—a+1)R

=explirla—b-7v)] RISy ,(3)
XoFyl-a=b—c=1,-b=-p,—~a+o;~a-c-8,
—b-c+a;l], (26)

When b+ 8 or a- b+ ¢ is an integer, from F,(2;45) we
get

Tla+b-y+1)I'(26+1)

b R
(a C):exp[w(a— b-y)] Tla—a+l) R,(2)
a By
X Fyl—a=b-c-1,-b-B,—a-b+tc;—a=-b+y,
- 2b;1], 27

When o — ¢ is an integer from F,(3;24) and F,(3;25) we
get

((zbc>
a By

:exp[iﬂ(ga__b+6)]r(b+c—a+1)r(6—y+l)

Th~c+a+1l)

R,(3)

Xng{*a““b—C,b—{3+1,—-(z+a;b—c+u+1,

~a-c-p1], (28)
<a b C)
a B vy
Th+c—a+1DI(1+c-y)
= explin(2a - b +8)] ( F(b—c+a(+1) 7/RP(S)
><3F2[-C—y,a+a+1,—a+a;b-c+a+1,
~b-—ctaill. (29)
When b + 8 is an integer from F,(2,15), we get
ab c\_ . Ta+a+1)I'(2b+1)
<a . >_exp[zn((1—2b+a)] e by 1) R,(2)
Y

X Fla-b-c,a~b+c+1,~0-Bia-b+ty+1,
-2b31]. (30)

A last kind of argument in the ,F, is obtained from
F,(3;12),
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({I b C):exp[in(a—b—y)]
a B vy

R,(3)
sinra g, 8inna pT(-a~b~c—-DI(a-c- B+1)

Fla+b-c+1,b-f+1,a+a +1;

a-c=-B+1,b-c+a +1;1], (31)

where /=1 when b +3 is an integer, /=2 when a- o is
an integer, or [ has any of these values when 2c¢ is an
integer.

Formulas {6), {13)—(17), and (28)—(31) display the
twelve possible types of arguments for the ,F,; the
120 ,F, can be obtained from them by the permutation of
a, b, cand change of sign for «, 3, y. Formulas (6),
(13), (26), and (31) lead to six ,F, and all the others to
twelve, For usual arguments (6}, (26), and (27) in-
clude three negative integers as numerator coefficients
of the ,F,; not taking symmetries into account there
are 24 such formulas. There are known® results of Van
der Waerden for (6) and Bandzaitis and Yutsis for the
others. Also, in the usual case, there are two negative
integers in formulas (28)—(30) which represent 36 ,£,.
They are Wigner’s, Racah’s and Majumdar’s formulas
respectively. There is only one negative integer in
formulas (15)—17 and none in formulas (13), (14), and
(31); nevertheless, these formulas could be used for
negative quantum numbers.

As there are I' functions in definition (2) of I, and F,
we must look more carefully to those with a negative in-
teger argument. When one of the 8 is a negative integer,
—n, the T cancels the » first terms of the series, rela-
tions (19)—(21) could be obtained by this prescription,
When one a, «,,; for example, is a negative integer,
the series F,(0;23), F,(2;03), F,(3;02), F,(1;45),
F,(4;15), and F,(5;14) in the definition of which
T(a,,,) appears are divergent because @, is their
convergence indicator. The result is mathemat-
ically undefined. However, we can sum, to some
extent, these series as described in Appendix A
and we can check that F,(0;23) = F,(0;45) for any com-
plex value of @, if the real part of - a,,; is not
too large, There is no such problem of convergence
for the 18 finite series.

5. EXISTENCE OF MORE THAN ONE INTEGER

As the sum of two a’s without common indices is
unity, two negative o have one or two common indices.
When they have two common indices, they can appear
as coefficients of the same ,F,; when they have only one
common index, one and the positive value of the other
can appear together, leading to quite complicated situ-
ations where some of the previous results break down.

When the a’s which are negative integers have two
common indices, relations {24) and (25) written for each
of them are compatible. The second one adds a F, and
Fﬂ to relation (24),__but a third or a fourth negative inte-
ger adds only one F,. The conditions that a;, @,
Qg5 and g, are negative integers give no relation be-
tween F,(0), F,(4), and F,(5) and these last two remain
independent.
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If @),,=-nand ay,,=-m with m >, the 18 finite
series related by (24) are limited by » but FP(0;14),
F,(0;15), F (1;02), and F, (1;03) in which there is
By =1+m —n, start from n - m instead of zero. Among
the 18 finite series related by (25), four includes —n
and the others are limited by — m.

To illustrate the conflicting situation, let us take
bz B integer. As a,,,=1+b— B, the coefficients of F,(2)
and F,(5) become infinite in relation (24); conversely,
the coefficients of F,(2) and F,(5) become infinite be-
cause b+ 3 is integer in the relation between these
functions and F,(4) obtained from a,,,=— b+ 8. The re-
lations obtained from a,,, and «,,, are not compatible
because the ratio of the coefficients of F,(2) and F,(5) is
not the same in the two relations. However, formulas
transformed as (26)—(30) no longer include an infinite
coefficient. A closer look at the ten F,,(Z) shows that, in
the absence of other integers, F »(2;01), F »(2;04),
F (2;13), and F »(2;34) are 1nfm1te sums thch must van-
1sh by contmulty with respect to — b+ 3; in relation (24)
they are indefinite (©Xx0), There is ~ 2b among the
denominator parameters of F,(2;05), F,(2;15), F,(2;35),
and F,(2;45); for them [sinma,,,I'(- 25)]™ can be replaced
by (- )"‘Bn'lr(zb+1) if b - B is not an integer. F,(2;15)
and F »(2:45) are finite sums because they 1nclude -b-3.

F,(2; 05) and F »(2;15) include - b+ 8 and are infinite
sums, but if — b + 8 becomes an integer, the terms
from § - 8+1 to 2§ vanish and the finite sum limited by
— b+ 3 plus the infinite sum beyond 24 verifies relation
(24). For F,(2;14), s=-b+ g and [sinma,,I'{s)]* can
be replaced by 7'T'(1 + b - B). The last one, F,(2;03), of
which the convergence parameters is - b — 8 becomes a
finite series related to F,(4).

In conclusion, we can replace [sinre,,,]* by
(=)"**85-11(0) and I'(0) can be used to change I'(0)(~ n)™
into {(-)"I'(n +1) for any positive integer » appearing in
a meaningful case (five among the ten). Such a limit
must be taken carefully because a too simple corre-
spondence singn? — (- }?I'(0) is misleading [sinmn
=ginn(l - n) for any value of n]. The set of relations
can be written:

2

F,(0) = gmlis;aﬁams) = (=) (1)
= sinnaim n8) = (aq) sflrr{é%)f (2)
<o) TELE 5), (32)
- 72 - -
F,(4)= W[“p(l) =(-)%03sF, (3)
m 1(0)= (@gs5) S’;fjg’ F,2)
< (@0s) g FalS), (33)
T = Sinra 2 Fl0) + Garcse ), )
Fl(2)= SEis b, 0) - ST F () (35)
47 J. Math. Phys,, Vol. 18, No. 2, February 1978

where =(a,,,) means, when the series is defined, one
should iake the series limited by «,,, or the finite
series plus an infinite one (the finite series not limited
by a,,,, without an infinite one does not verify the re-
lation). In this case f;, = - 2b is a negative integer; re-
lation (21) fails, but gives the value of the infinite se-
ries (beyond 2b +1) of F,(2) in terms of F (5) and F,(5)
and F,_(2) to a sign.

When a,,,=-a+ ¢ is also an integer, there is com-
patibility between o, and a,,; but not between a,,; and

(g5 Relation (32) is completed by
- r(0)
F,(0) = ()%2ssF' (2) = <a245>s7{m§854m1>
« . AT(0) =
={=) 145—n BazF(S). {38)

A detailed verification of F,(5) shows no effect of ;!
one needs only the first series, finite of infinite; when
there are two parts of the series they have opposite

s1gns the only undefined expressions are F,(5;04) and

F,(5;34). Relation (33) reduces to
— o3 E _ ? =
F,(4)=(=)>ossF (3) = Sinma,, sinmp, F,(0)
_ 7(0) = = 5 7 (0)
= (aoss)s—im [Fp(l)’ Fp(z)] e (aozs) gf;ﬂ’m F (5)’
(37)

but the relation with F (5) holds only when @, is pres-
ent, otherwise, it is <« x0 because 8, vanishes. Rela-
tion (34) stays and relation (35) disappears.

When o, =~ a-— a is an integer, the modifications of
relations(32)—(35) are similar but interchanged with
respect to F,(0) and F,(4).

With four negative integers, there are two conflicting
situations. In the first one, the negative integers are
on the same row or column of the Regge symbol. With
the last row, from o ,,=-b-Band apy=-a-b-c -1,
we get

—0:_‘14— ~ ‘ITF(O)—
F,(0)=(=)"95F (1) (0145)Sln7TB45 »(2)
N T0(0) = o @ TI(0) =
~(a'145)SinnBS4Fp(3)~(am)(—) i S—imbFnM)
o TTF(O) =
z(‘1145)(_) 14ssinTTB;F (5), (38)
and from o, and @, =-a- @, Or O, =—c—7v, a Simi-

lar relation for F,(4) and F,(5).
formulas are related by
= ¢y SinTag, = sinmog, ., =
Fy(0) T sinma,,, £y(4) + sinnaf;: F,6. (39)
Note the difference of sign between F,(2) and F,(3) or
F,(4) and F,(5) in expression (38), Whereas there is no
difference of sign in relation (25) which holds when a,,
only is a negative integer.

These three sets of

The second conflicting arrangement with four integers
is a+ o and b+ B integer. In this case

Fl0) =
’ Sinma, . sSinma, 4,

F,(3)=(=)"1sF (1)
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7 (0)
sin7f,,

= (~)%=sF,(2) = (=) 115 — 2 [F, (4), F,,(5)]

=(=)4TST(O)T(0)[F (1), F,(2)] (40)

but the relation with F,(1) and F,(2) holds only when
Qa4 OT 0,4, Tespectively are present. Also

7.[2

F)= (- 72F,6)= (1) F, (3) = g F(0)
0) — —
o [F,), Fy(@)] = () w5720 0)
x[F,(4), F,(5)]. (41)

The transformation to an hyperspherical basis of a
two-body harmonic oscillator wavefunction leads to a
generalized 3-j symbol'® for which a+ « are the radial
quantum numbers, a+ (b- c) are the hyperspherical and
the hyperradial quantum numbers; in the simplest cases
b+ fand cxy are half-integer. Seven different formulas
were given, which lead to the same result for any value
of two parameters (b + 8 for example), We found

= m = — =
Fp(o)—m[Fp(Z),F,(3)]—(—) o”"sF,(5)

m — — . =
:W[F (0), F,(5)]=(-)%s5F,(2)
=)0 T (9) = T OV (1) = () 7w L E )

45
_sinmo,, = sinmB,, =
- sinnazzz Fy4)+ sinna:; Fy). (42)

A trivial symmetry of this problem was the change of
sign for the magnetic quantum numbers which is the
change of sign for the » and permutation of (045) with
(123), as can be seen in (7). The seven formulas of
Ref. 10 are F,(4) [by symmetry F,(1)]. A F,(5;24) was
previously published.!! In fact, there are eight formulas
with two negative integers among the numerator para-
meters of the ;F, [four F,(1) and one F,(0), F,(2), F,(3),
and F (5)} and twenty formulas with only one negatwe
mteger [four F,(0), F,(1),F,(2),F,(3), and F,(5)]. F,(4)
and F (1) cannot be used except by their linear combina-
tion shown in (42); anyway, they include no negative in-
teger. Consequently there is no conflict in this situation
with four integers.

When @, . =a- b - ¢ is also negative integer we get

F,(0)=(=)07"sF ,(5) = (=) #F (2) = (=) **F (3)

_gérlz_ﬁ’gl[ »(2), F,(3), ~F,(1)]
—(L)eses S?lfrl:(g) [F (), F (5), .y 4], (43)

F,(4) = (=)"F, (1) = (-)"s7"or (0)T(0) [F,(2), F,(3)]
% (=)%a5*"372T(0)T (0)[F,(0), F,(5)], (44)

but the relations denoted by =hold only three times, the
other values being « X0, When o,,s,=-b— 8 is a nega-
tive integer

Fy(0) = (=)*145F (1) = (<)"o7sF,(5)
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_ 712 NP(O)
" sinma,singp,, [F,(0), F,(5)]= sinmfB,; F,0
=(=)*145'72"3T (0)T(O)F, (4) (45)

and F,(4) is independent. There is a similar relation
when a,;=— c -y is a negative integer.

The most important case is when «;; and the nine
ay; are negative integer because it is the usual one.*®
Then

F,(0) = (< )ousF, (1) = (- )o"sF,(4) = (- )75"sF,(5)
= (=)7L (O)T(OF, (1) = (<)%e57275 T (O)T (0)F, (6)
(46)

leading to 120 formulas for the same 3-j symbol, In
(45) and (46) [ stands for 1, 2, and 3 and { stands for
0, 4 or 5. Among them 96 are finite sums,

6. SYMMETRIES

Up till now we considered the generalized 3-; symbol
(6) and we investigated how many formulas can be used
to obtain it. Conversely, each formula can be inter-
preted as twelve generalized 3-j symbols, which means
that there can be symmetry properties between 1440
generalized 3-j symbols. To study them, we have only
to consider the six » parameters (7).

The six » parameters divide into two subsets: 7, v,, 75
on one side and 7, 7,, ¥, on the other side, Their per-
mutations and the change of their sign generate the
1440 3-j symbols. We can establish the following prop-
erties:

(1) 7, 75, 75 can be permuted. This symmetry is triv-
ial and introduces no sign.

(2) 7, 74, 75 can be permuted two by two if their dif-
ferences is an integer. Permutation of 7, and 7, is triv-
ial. Permutation of 7, and 7, leads to

explin(r, - 7,)]F,(0) ~explinr, - 7,) | F,(4)

=—explin(r, - r&](%%%:“:—:s;fp(m

sinm(r, - 7,)=
s'ﬁmﬁ“’(m) 4m

which means invariance if ¥, - 7, is an integer.

(3) The transformations above are the even transfor-
mations of the Regge symbol. The simplest odd trans-
formation is the change of sign for «, B,y, v, ~~ ¥y, 75
— =7, 75—~ -3, which leads to

explin(r, - 7,)]F,(0) — exp[in(r, - r,)F,(3)

explin(r, — 7,)] —
:m [smnalst (0) - SlnTT01345FP(5)]. (48)

If a+b+c=-oa, is an integer,
4
(a b C>:exp[i7r(a+b—c+2y)]<a b C) (49)
-a =B -y a By

which reduces to the usual relation when oy, ,=-c+v
is also an integer. In such a relation »,, »,, 7, can be
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permuted. If @,,5 OT a,,; iSan integer we obtain other
relations related to even permutations of g, b, ¢ in the
right-hand side of (49).

These symmetries are the usual Regge’s symmetries,
Permutations of a »; with a 7, lead to Yutsis’s mirror
symmetry; they do not keep the structure of the square
roots R,(x) or R (1) and introduce negativelike arguments
in the T functions. In that, we cannot follow Yutsis’
rule because it is not an analytical continuation, Let us
consider how Yutsis introduces his rule: The change
I—-1-1into (I+m)!/(I-m)! introduces a “phase”

T(-14+m)T(I-m+1) _sinn(l +m)

T{<l—-mI{+m+1) sing(l-m)" (50)

For any complex value of m, this reduces to (-)*!"!
when [ is an integer or half-integer; for any complex
value of [, this phase is (-)*™ for any integer or half-
integer value of m; when [ and m are both integer or
half integer, this phase is mathematically undefined but
is taken as being (- )*™ by Yutsis, in contradiction with
the analytical continuation from 7 to —7-1, as discussed
above. The square root introduces an ambiguity of sign
which depends on the path of analytical continuation.

By permutation of 7, and #, in (9) we get

-a-10b ¢ =explid) ab ¢
o B v o By

with

1/2
explio) =explin(- 20 - D |(E2 g2 L oo

, sinm(c — b + a)sinm(a + a) 1/2
=explin(- 2a- 1)](simr(c — b -a)sinm(a - a)) )

This phase vanishes for a=- 4. It is the phase for a
path which is symmetric for a - - a-1 in the complex
plane; its value is £ 1 for all integer or half-integer a.
If the path is chosen along the real axis the phase of
sing{e + a)/sinn{a — @) increases or decreases by 7 with
respect to the sign of the imaginary part of @ when a
increases for a half-unit. Consequently, when the signs
of the imaginary parts of (¢ - b) and « are identical,
the square root is explin(2a +1)] for any integer or
half-integer value of a; when these signs are opposite,
the square root is 1 for these values. We obtain

—a-1 b ¢
o
By ab c
= (=)te <1/2) (Simn{Im (c-b)}-Sn{Im(e)}) (53)
a B Y

for any value of b, ¢, @, and 5 when a is an integer or
half-integer. The path can be deformed; then
Sign{Im(c - b)}=1 means that the zeros b— ¢ +nr are
above the path and the poles ¢ — & + nr below it.

Permutation of 7, and #, leads to a phase deduced
from (52) by cyclic permutation of a,b, ¢. Permutation
of 7, and #, leads to

abdb -c-1
a B v
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. . 1/2
_(sinn(a—b +c)sinn{y + ¢)

_<sinn(a - b - c)sinm(y — c))

abc
)
a B Y

a b c
2(_)(c+1/2)[Slg'n(lm(b-a))-Sign(Im(r))] ( )

a By

when », — v,=2¢ +1 is an integer, using (21). If b+ 8 or
a- a is an integer, (24) can be used, but it is more re-
strictive than (21). We can note

(1) the phase for the change of sign of a, b, ¢ is cyclic.

(2) there is no phase for a — — a- 1 when a is half-
integer.

(3) if there is a phase (-)***!, this phase disappears
when the sign of magnetic quantum numbers is changed:
Relation (49) holds with the actual values of a, b, ¢ in
contrast with Yutsis’ notation.

(4) the phase for a—~-a-1, b—-b-1 is the product
of the phases for a— - a-1 by the phase for b ~-5-1
with a changed into ~a-1. As @ and b must be half in-
tegers, we can define the path with respect to the imag-
inary parts of o, 3, and ¢; roles of a and b can be inter-
changed.,

(5) there is a difficulty for a~ -a-1, b—-b-1,
and ¢ — — ¢ — 1 when anyone of a, b, and ¢ is half integer
because no parameter is left to define the path, How-
ever, very different relations can be found when there
are more than one restriction on the »,

For example, let us consider the relation (51) when
(c-b) and o are integers: When all the poles are on the
real axis, the square root of (52) reduces to a sign
(_ )2(:-2b+2a and

-a-15% ¢ abdb c

=exp[in(~ 2a~1)] (55)

o B v o By

for any value of a. If ¢~ b or o is half-integer the
symmetric path cannot be used because it goes through
the singularity; a detailed study of the behavior of R%(0)
in the vicinity of a=— 4 when going along a small circle
shows a change of sign between a=—4 +e and a=-1 —¢
which compensates the phase 2¢ — 25 + 2 and the rela-
tion (55) holds. A similar relation can be obtained for
any complex value of ¢ only if 6+ 8 and ¢+ o are nega-
tive integers, using (40).

In conclusion, the analytic continuation a ~ - a-1 for
integer or half-integer values of @, when the other
quantum numbers are complex, introduces a phase =1,
depending on the path, but never i as in Yutsis’ nota-
tion. Furthermore there is a phase + explin{2a +1)] for
any complex value of a if some other quantum numbers
are integer or half-integer.

7. SUMMARY AND CONCLUSION

A generalized 3-j symbol is defined by two sets of
three parameters (r,, 7,, #;) and (r,, »,, 7;) where 7,
plays a special role. To compute each of them, there
are ten formulas related to permutations of » , 7,, 7,
74, 75 and there are twelve independent definitions with
respect to what is selected to be », and an overall sign
for the . There are three-term relations between any
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of these independent definitions. However, if the dif-

ferences between two ¥ or some combinations of them
are integers, the twelve definitions become identical,
leading to 120 formulas among which there are 12 dif-
ferent patterns for the usual conditions on the angular
momenta.

Each formula can be interpreted in six independent
ways as generalized 3-j symbols {permutation of 7,,7,,
v,). Permutation of r,, »,, and r, gives new coefficients
if their difference is an integer. Exchange of (r, 7,,7,)
with (r,, 75, ;) and change of sign gives relation to
another set of coefficients if #;, and 7, can be found
among 7, v,, ¥, such that £+, + 7, +r_ is a positive
integer, but this relation includes a coefficient which
reduces to the usual phase for angular momenta, If all
the differences r; - 7; are integer we get the 72 coeffi-
cients of Regge’s symmetry. In all these permuations,
the arguments of T functions remain positivelike and
there is no problem of phase.

Keeping 7, fixed, permutations of the other #’s give
relations to other generalized 3-j symbols which are
usually considered as analytic continuation of the usual
ones. These relations reduce to a phase when the per-
muted 7 differs by an integer. This phase is always + or
— and depends on the path of analytic continuation (a
phase i can be obtained only if the path goes through a
zero and a pole). So, there are 12 sets of 120 general-
ized 3-j coefficients for any value of the ». Each of them
can be obtained using ten different series, finite or in-
finite, which can be summed up when all the » are small
enough even if they diverge, using the method described
in Appendix A, When the differences between the » are
all integers there are 1440 related 3-j symbols and, in
principle, 120 formulas for each of them.

The following patterns:

o N P T I P
+ 4+ |+ =] |- =+ |- =< (56
e S DU C O S PR o T T

are respectively those of the Regge’s symbol for the
usual 3-j symbols and after the change a -~ -a -1 for
1,2, or 3 angular momenta (the sign of the sum of rows
is given in subscripts). Instead of the analytic continua-
tion, the sign of which cannot be easily defined, we
suggest that any generalized 3-j symbol be defined by
such or such expression with respect to the first
pattern,

This work did not take into account the pattern

I+ + - - 4+ - - -+
+ ¥ o+ + + -
+ N S R e
(57)
+ o+ - - - + - -+

- - + - - - - -

+ -

which occurs if the usual relations between arguments
are kept except that ¢> a +b, because we know no ex-
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ample of these coefficients, Their study is more diffi-
cult, due to the definition of positivelike arguments of

T functions and the relative position of negative integers.
Note that (56) and (57) do not present all the possible
patterns,
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APPENDIX A: EVALUATION OF DIVERGENT
SERIES
Let us consider the infinite series

3F2[ay b’ C‘,e,f;l]
abe | abe (a+1)(p+1)c+1) +

= oI okl (e DF+Dxe (ab)
and its convergence parameter
s=e+f-a-b-c. (A2)

The series (Al) converges only if Re(s)> 0, In fact, it
converges quite slowly if Re(s) is not at least 2 or 3.
Let us introduce a hypergeometric series and a para-
meter D,

DX,F,[A,B;C;1]
L AXB  AXB A+1)(B+1)
=D 1+ 557 Y ex1 T(CF X2 (A3)

such that the nth term of (A1) and the nth term of (A2)
coincide to a relative error n™, We get

A+B-.C=-s=a+b+c-e-f,
A2+BZ_c2:aZ+b2+C2_ez_f2’
A3+B3—C3::a3+b3+c3—e3—f3,

_ D(e)T(f)T(AT(B)

T TOT@reric”

The sum § of ,F,[a, b, c; e,f;1]~ D,F,[A, B; C;1] con-
verges if Re(s)> - 3 leading to the result

3F2[a> b: C: e,f:l]
=S+ D,F,|4, B;C;1]

(A5)
g, TOT(A)TEIA)TE)
- T(a)T®B)T(c)I'(s + AT (s + B)”
In particular, the relation
1
T(OT (/)T (s) sFela,b, c;e3731]
S T'(AT(B) (A6)

= ML (T T T@T @ () (s + AV (s + B)

holds for s =0, — 1, — 2 when the term S disappears, but
ig invalid for the other negative integer values.

This method of evaluation for the ,F, is consistent
with Thomae’s transformation as, for sufficiently small
coefficients, the ten F,(i) or F,(¢) give the same result.
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TABLE 1, Shift of Whipple’s parameters for contiguous functions,

F Fla+1) . F(B+1) Fi(C+1) F(D-1) RE-1) F+)
ya=§[s+m+zﬂ+zc—4n_4p} ¢ L 4 i 2 2 -3
rt=:?[~1+2A-4B-4C+2D+2E] 0 3 -2 -2 -3 -4 -3
#,=L~1-44+2B—4C+2D+2E] 0 -2 % -3 -3 -1 -5
73=16-[—1—4A-4B+2C+2D+2E] 0 -2 -2 3 -3 -3 -3
r4=é-[—1+2A+ZB+ZC+2D—-4E] 0 1 3 3 -3 2 2
75=:-[—1+2A+2B+20—4D+2E] 0 i 3 3 2 -3 H
Notation FP(O) F;(2'3)(O) F;“'a)(o) F;“’Z)(O) F‘,(,O'5)(O) ngﬁ)(o) Fp(4'5)(0)
APPENDIX B: RECURRENCE RELATIONS gl Y=y, i3 k1, m#0

Recurrence relations between contiguous _F,[A, B, C;
D; E; z] have been studied by Rainville'® but we know of
no study of the recurrence relation for ,F,[A, B, C; D,
E;1] based on their symmetries.

The simplest recurrence relations are
A{ze[AyBy C; D’ E;Z]-— 3F2[A+1’B: C; D; Eyz]}

+ABCZ
DE

(B1)
JFlA+1,B+1,C+1;D+1,E+1;2]=0

and
(D=1} {,F,[A,B,C; D, E; 2]~ ,F,[A, B, C; D~ 1, E; 2]}

B2
+ ABCz B2)
DE

JFelA+1,B+1,C+1;D+1,E+1;2]=0

Eliminating F(+)=,F,[A+1,B+1,C+1,D+1,E+1;2],
we get four independent relations between ,F,[A, B, C; D,
E; z] and five of the ten contiguous functions. Table I
gives the Whipple’s parameters 7 in terms of A4, B, C,

D, E and their shift for contiguous functions.

We can note the occurrence of four shifts by 4 and
two by — £ or four shifts by — % and two by 2. Conse-
quently we shall note by F{%?(D) the function defined
by (2} for which 7, and »; are increased by £ with res-
pect to those of F,(0) and the aother r» decreased by 1;
similarly for F;?(0), v, and »; are decreased by 2.
With respect to Whipple’s parameters, F(+) is a
contiguous function whereas in the usual sense it is not.

Therefore, there are 30 contiguous F,*" (0) of F,(0);
the ones with positive shift are given in Table II in terms
of A, B, C, D, E and of 3-j symbols. Replacing the ,F, by
F,(0) in (B.1) or (B.2) and using the symmetry property
and also relation (4), one gets a recurrence relation be-
tween F,(0) and any two of its contiguous functions. All
these recurrences can be collected into three types, of
which the most important is

h(ij; RIF ,(0) = & (i, ))F~ 4 9(0) - gk, NF*V(0) =0, (B3)

where
hij, k) =4 +4(r, +tr,-7v;-7) (B4)
Ay R 400,
gli,j)=a a0, 4,j,k 1, m#0
(B5)

=1, iorj=0
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= Ay X1y Upn Y g 2 0!‘]:0, k, I, m,n#*t,j.

(B6)
From (B3) we obtain
Jij;R0F (0) + g(3, ) )F# (0) — g(k, DF P (0) =0, (B7)
F/ (5 RDF,(0) + g’ (i, ))F; 4 (0) — &' (R, DF;® 1(0) =0, (B8)

where
JUgskl) = B, k1) - B(3j;if)

=4t —r—r)trtntriory, - ri=0,

(B9)
F'(@skl) = k(LRI — h{ij;RD)
=3 tr—n =) try tntriory, - -7
(B10)
When written for the F,(O), relation (B3) becomes
Wi RDF,(0) - 3/ (i, ) F5 4 (0) - (R F - V(0) =0, (B11)
TABLE II, 5hift of 3F; and 3~j parameters for contiguous
Whipple’s parameters,
iaj A B C D E a b c a ﬁ v
0,1 0 -1 -1 -1 -1 3 0o -4 -1 0 3
0,2 -1 0 -1 -1 -1 0 7 -+ o 5 -4
0,3 -1 -1 0 -1 -1 0 0 0 —1 1 0
0,4 0 0 0 0 -1 -3 0 % -} 0 3
0,5 o 0 o0-1 0 0-% ~} 0 ¥ -3}
1,2 0 0 —-1 o0 0 3 0 L1 =L o0
1,3 0 -1 0 0 0 : 0 1 -1 0o 3
1,4 0 e 1 0 o 0 0 0 -1 1
1,5 1 ¢ g 0 1 3 -3 0 i -% o0
2,3 -1 90 0 0 0o -0 3 L0 ER
2,4 0 0 1 -3 3 o 3 -3 o0
2,5 0 1 0 0 1 -0 o 0 1 0 -1
3,4 0 0 101 0o -3 o0 3 -1 o 3
3,5 0 0 0 1 0 -3 i o 3 -3
4,5 1 1 -1 -3 o 3 -1 o
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where

B0, =€, )0 405,04 505500 %, (B12)
0, 7) =ell, N @ n P ama® g 12, (B13)
with
e(i,j)={ 1 ifforj=0and{,j#40or5,
—lifiand j#0and { or j=4 or 5. (B14)

In (B12) are all the «,,, with 7 and §; in (B13) are all the
a,,, without ¢ and j.

When written on the 3-j symbolsg, the phase (B14) is
simple because ¢(i,j) =1 except for e(4,5) =~ 1. With the
coefficients given by (B4), (B7), (B8), (B12), and (B13)
we can write a recurrence relation similar to (B11)
between a 3-j symbot and any two of the 30 contiguous
anes,

One of the simplest cases is =1, j=4, k=2, [=5

for which we get
a b c

-(1+c- +

(T+c-nle+N), 6y
e c=M=D+RA+D+B) L +c-y?
O\ cmnitata) ey

a B+1 v+1

a b ¢

(—a+a)]'® =0

o+l Ay-1 (B15)

for any value of a, b, ¢, @, 8, and v,

As can be seen in Table U, these recurrences do not
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include the ones on an angular quantum number because
the change of a into a +1 does not lead to a contiguous
coefficient. A recurrence beiween a,a—~1,a+1 can be
derived from three elementary recurrence relations.
Our definition of a contiguous ,F, differs from Bailey’s
definition, !*

lya,A. Smorodinskii and L.A. Shelepin, Usp. Fiz. Nauk 106,

3 1972).

M. S, Kil’dyushov, Yad. Fiz. 15, 197 (1972).

%V.A. Knyr, P.P. Pipiraite, and Yu.F, Smirnov, Yad. Fiz.
22, 1063 (1975),

4W.J, Holman, IO and L.C. Biedenharn, Ann. Phys. (N, Y.)
39, 1 (1966); H, Ui, Prog. Theor. Phys. 44, 639 (1970),
°T, Regge, Nuovo Cimento 14, 951 (1959),

SA.P. Yutsis and A.A. Bandzaitis, The Theory of Angulay
Momenta in Quantum Mechanics (Vilnius, 1965),

’G.Racah, Phys. Rev. 62, 438 (1942),

SE.P. Wigner, Group Theory (Academic, London, 1959).
D,A, Varshalovich, A, N, Moskaliev, and VK. Khorsonskii,
Quantum Theovy of Angular Momenta (Leningrad, 1975),

107, Raynal, Nucl. Phys. A 259, 272 (1976),

Uy 3, Weber, Amn. Phys. (N,Y.) 53, 93 (1969).

12p_ J.W. Whipple, Proc. London Math, Soc. (2) 23, 104 (1925)

Bw N, Bailey, Genevalized Hypergeo:etric Sevies (Cambridge
Tracts no, 32) {Cambridge U, P,, Cambridge, 1935).

My, J, Slater, Generalized Hypevgeonwielvic Functions (Cam-
bridge U. P., Cambridge, 1966).

154, D’Adda, R. D’Auria, and G. Ponzano, J, Math. Phys.
15, 1543 (1974); M, Huszar, Acta Phys. {Acad. Sci. Hung.)
32, 181 (1972).

16y, Thomae, J, Math, 87, 26 (1879), as cited in Ref. 14,

%% _J, Holman, I and L.C. Biedenharn, Ann, Phys. (N.Y.}
47, 205 (1968),

8¢ D, Rainville, Bull, Amer. Math. Soc. 51, 714 (1945),

1%y, N. Bailey, Proc. Glasgow Math. Assoc. 2, 62 (1954),

Jacques Raynal 476



Exact statistical mechanics of some classical 1D systems
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The classical partition function Qy is calculated in closed form for the following 1D N-body “hard-core”
potentials, V =3~ | (gx; +b/|x; —x;_|), i.e., a Coulomb nearest neighbor “chain” in a uniform

field, and ¥ =(1/2)2_, I, exp (x,—x/), a “fluid” with exponential interactions. The Qy for

both systems is separated into a product of N, similar, tractable integrals each depending on a different
value of the index i. All thermodynamic variables are obtained in closed form. In the limit, as N—w,
most of them do not linearly increase with the size of the system, i.e., they are not “extensive.” This is

also discussed in terms of the “stability’” and “temperedness” properties of the potentials. Nevertheless,

both systems do have a heat capacity which is “extensive.”

1. INTRODUCTION

There are few N-body problems whose classical par-
tition function is known exactly. Even for one-dimen-
sional systems! with interparticle potentials other than
linear or quadratic in the space coordinates, formida-
ble calculational difficulties arise. Additional external
fields can, in many cases,® complicate matters even
further.

We will evaluate exactly and in closed form configur-
ational partition functions

Q= dxyexp[- 8V(xy)], 1.1)

with 8=1/kT, Xy=(Xy,...,%...,%,) and T the tem-
perature, for certain classical one-dimensional (1D)
systems with anharmonic N-body potentials, V(xy). In
some cases, an external, uniform field will be included
in V(xy).

The multiple integral @4, (1.1), is, for general
anharmonic potentials, extremely difficult to compute,
We have been able to find, however, for two specific
examples, nontrivial coordinate transformations, which
separate @y into a product of N, similar, tractable in-
tegrals each depending on a differvent value of the index
i(¢=1,2,...,N). Such systems are to be distinguished
from the simpler ones discussed in Appendix C, in
which an obvious transformation separates the @, into
a product of N identical integrals, independent of the
numbering of the degrees of freedom,

Section 2 deals with the nearest neighbor Coulomb
potential in a uniform field

V(Xy) = 121 {gx; +0/ %= x, 411

with g,0> 0, as an example of a wider class of poten-
tials which are amenable to our treatment. Takahashi, s
Gilirsey, 4 et al. introduced a similar separation method
for linear assemblies with general nearest neighbor po-
tentials., Their results, however, are not applicable
when an external field is present in the problem, as in
(1.2). This more general case was also treated by
Montroll,5 who obtained an expression for the equation
of state of a 1D system of particles with arbitrary
nearest neighbor potential,

(1.2)

@ present address for both authors: School of Physics, Georgia
Institute of Technology, Atlanta, Georgia 30332,
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In Sec. 3 we treat the exponential potential

N N
Vixy) =3 iZg ,z? exp(|x; - x,1]), (1.3)
in which we allow interactions between all particles,
Kac, in 1959, calculated exactly the partition function
for a 1D “gas” with pair interaction — exp(- lx; -~ x,1)
plus a finite size hard core.® His approach, however,
and his results for the fundamental thermodynamic vari-
ables are quite different from our own.

In each of the above two cases, (1.2) and (1, 3), we
display in Secs, 2B and 3B, explicit formulas for the
free energy F, the internal energy U, the heat capacity
C, etc. In Sec. 2A we also obtain the average length L
and the thermal expansion coefficient ¢ of the Coulomb
gravitating (CG) “chain,” (1.2).

In 2B and 3B, taking the N— <« limit, we find for both
systems that the “bulk”-limit of F/N and/or F/L is not
finite, Hence not all appropriate thermodynamic varia-
bles will be extensive, i, e,, proportional to the size
of the system, The divergence of U/N appears as a
constant, dependent on N but nof dependent on 7, There-
fore, the C/N for both systems turns out to have a
finite value in the infinite N limit. The divergent term
in U/N could, of course, be removed by subtracting the
appropriate function of N from the Hamiltonian, This,
however, does not affect the calculation of L which still
remains a non extensive quantity.

2. COULOMB INTERACTION IN A UNIFORM FIELD

Consider a one-dimensional “chain” of N particles in
a uniform field of strength g, which are coupled to each
other by some nearest neighbor interaction v(»), where
Y= |x;-x;4| and i=1,2,,,.,N, The potential energy
for such a system is
N
V(xN):gli{gx,—+1)(!xi—xi-1l)}o (2.1)
One end of the chain is fixed at the origin of the co-

ordinates, i.e.,
x4()=0 for all £, (2.2)

while the other end is free to move between zero and
infinity. In addition, the particles have 0-diam hard
core, i.e., they do not go “through” each other,
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=Xy SX;SKySeooSxy <o, (2.3)

As an example we evaluate @, (1.1), for the “chain”
with Coulomb interaction v(#)= l/r, and compute its
thermodynamic properties. The potential energy is

xN)—Z){x +b/

for any o> 0 and g=1. Equation (2, 4) may be thought of
as the potential for an array of N identically charged
particles subject to a uniform gravitational field (“CG”
system),

(=X )h (2. 4)

We introduce the simple but important identity

N N
21 xX;= Z)x N+1-9)x;-x,.), (2. 5)
ts 2=
and perform a linear transformation
V=X~ X4, i=1,2,...,N, (2. 6)

whose Jacobian is easily shown to be unity.? Then upon
substitution from (2, 5) and (2. 6) in (2, 4) we find that
(1.1) yields

. - N
QszO dr1"'f0 drNexp[ 2{1V+1—Z)V¢+b/1’z}]

2.7)
We have thus separated the N-fold integral into a

product of N single integrals each depending on a dif-
ferent value of the integer variable

n=N+1-1i (. 8)
and can rewrite (2.7) as
N w
Qn= H1 J, @ exp[- By +b/7)). (2.9)
All expressions will become dimensionless, if one in-

serts the appropriate dimensional constants.

The one-dimensional integral on the rhs of (2, 9) is
known' in closed form:

0= J,” dr exp[- Blwr + b/r)] = 2(b/n)! /2K (280D,

(2.10)
where K is a modified Bessel function of the third
kind, ¥ Hence the @ for the CG system finally becomes
N
Qx=2"0"/N)1/2 11 K,(28Vnb). (2.11)
nal
It clearly follows from the above discussion that the
@y for a general potential (2. 1) can be similarly
evaluated if the integral

a,=J,, dr expl- Blar +v ()], (2.12)

where 7; is the hard core diameter, % can be found in
closed form as an explicit function of n.

A. Thermodynamics of the Coulomb-gravitating system
The full canonical partition function® is
Zy=2""*Qy, x=2mm/h’g,

with m the mass of each particle, 7 Planck’s constant,
and Qy given by (2.11), Note that a factor 1/N! is not
present in (2. 13) because we are concerned with one
specific particle ordering,! (2,3). We now compute
the free energy

(2.13)
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F=-FkT logZy

N ul
= kT{E (logdbx — logN1)+ 7, logKl(ZB\/n_b)},
":1

the internal energy per particle (2.14)
LA
NeT =~ NET 9,3 logZ y
_3, g Ko(28Vnb)
~ 5y Tosam (2.15)

o} K1(2B\/n_b) ’

in units of 27, and the specific heat (at constant pres-
sure, P=0)

L .13
Nk~ NR 3T
:l+21 2N+1___N{ K0(2BV )
1 hE*( ) +28Vnb K, (23VaT)
(2,16)

which varies between the values 1 at T=0 and 3 at

T=<, in units of Nk. The average length of the “chain”

is

© . X
L=(ry=Q3 [, diy- ..jodexzfo 2ax, x yexp[- BV].

(2.17)

We indicate in (A6, A7) how to evaluate this N-fold

integral:

L3 '{A (QBVRB) S K, (2B VAR

(2.18)

The coefficient of thermal expansion, «, is obtained

as

_1aL
=TT
2550 & Kz(Zﬁ«/;TI;)T
=8k6+ = — 2{1 [—————K‘(%m) . (2.19)

In deriving the above formulas we make use of the
derivative and recursion relations for the K, Bessel
functions; cf. Ref. 8 Sec. 9.6, 26, 27.

B. The NV =0 limit

In Appendix A we prove that the free energy, per
pavticle, of the CG system diverges as the number of
degrees of freedom, N, tends to infinity! Moreover, we
calculate there explicitly that

L/N o 2VE/VN

and also that the coefficient of thermal expansion, a,

satisfies ,
&3 2\:/’0 10gN/N1 /“;

(2.20)

{2.21)

hence L and («L) are no! extensive parameters of the
system, Equation (2. 20) may be explained by noticing,
from Appendix A, that our limiting procedure for

N - is equivalent to taking the 83—, i,e., T—0,
limit of the finite N case. Therefore, as N increases,
the distance between the ith and the (i - 1)th particle,
d;, tends to the (mechanical-) equilibrium value of the
separated potential in (2.7),

V)= (N+1-i)r +b/7, (2.22)
ie., d;— (h/N+1-4)!% Summing up the d;’s we also

recover (2. 20) by th1s method:
N

L:E d; ;:w\/_z nt/? ~2\/—-
i= n=1
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where we have used definition (2, 8) and (Ala).

It is clear from the above considerations that the CG
system, in the “bulk”-limit, behaves like a “column of
atmosphere” rather than a “chain” model for a one-
dimensional solid, Already from the analogy with the
well-known problem of the ideal gas “atmosphere, ” it
would appear that not all thermodynamic variables of
the CG system will be extensive,

Another reason why we might expect such a result in
the thermodynamic limit stems from the following
argument: It is known!® that a sufficient condition for an
N-body system to possess extensive free energy is that
its potential energy be both “stable” and “tempered,”
Stability requires that V{x,)/N have a finite lower bound
which will prevent “implosion,” i, e., a “collapse” of
the @, in phase space as N —«, The potential (2, 4) is
indeed stable in that sense, since it is clearly bounded
from below by zero, Temperedness on the other hand
(meaning no “explosions” as N — «) holds if and only if
the paiv potential, between any fwo particles, satisfies

v(r) < Ar-l-, (2.23)

for some A,e,7;> 0 and all ¥> ¥, The pair potential
(2. 22) does violate inequality (2, 23) but acts between
nearest neighbors only, This serves as one more
motivation for investigating the extensivity properties
of the CG system.

There still is an important variable of this system
which is extensive in the “bulk”-limit, namely, the
heat capacity. Since the large N behavior of U/N turns
out to be dominated by an additive term which is inde-
pendent of T,

U/N kT +4/0N/3, (2.24)
(cf. Appendix A). it follows that

lim(C/NEY=1, (2. 25)

N-w

This last result, (2.25), is derived in Appendix A
directly from the exact finite N formmla for C, (2.186).

3. A “FLUID" WITH EXPONENTIAL INTERACTIONS

The second one dimensional model is a “fluid” with
an attractive interaction between any two particles
(“EAP”), described by the potential

N N

Vixy=3 2 2 exp(|x;—x,|)
30 Jj=0

(3.1

We impose again fixed-free boundary conditions and the
ordering of the particles (2. 3), as in the previous ex-
ample. This time the N-fold integral @, can be sep-
arated into a product of N similar integrals by a non-
lineay transformation

i-1

g‘.EE exp(xi—xi), i:l,Z,.. .,N.
Fa0

As before, each integral will be a function of a different
value of the numbering parameter #. The separation is
carried out in detail in Appendix B and yields

(3.2)

N
Qy= ﬂl E(np), 3.3)
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where E;(z) is the exponential integral

eoe_z
E = _—
) f 2,

The special properties, asymptotic formulas, etc, of
E(z) ean be found, for example, in Chap. 5 of Ref, 8.

8.4)

A. Thermodynamics of the exponential system

The free energy for this system is immediately ob-
tained from Z [cf, (2,13) and (2.14)], with @ given
by (3. 3):

N
F:~kT{§[10gx+Z} logE1(nB)}, (3.5)
n=1

We derive the internal energy and the specific heat for
the EAP model

m E1(nB) @.6)

and
o= 5o oon(255) - (2550)]
6.7

The low and high temperature limits of C/Nk are } and
3, respectively.

B. The AV = oo limit

Following the discussion in Sec. 2B, we observe
that the potential energy of the EAP system,
(3.1), although “stable” (bounded below by zero), is
certainly not “tempered”, since v (»)=e’ does not satis-
fy (2.23). In Appendix B we prove that /N indeed
diverges when N — «, as suspected from the nontem-
peredness of the EAP pair interaction. Although there
are obvious differences between the two 1D models
treated here, it turns out that the large N behavior of
their internal energy and specific heat is quite similar!
In the EAP system, the divergence of U/N appears
again in the form of an additive constant

U/N ~ kT +N/2. (3.8)
Hence, C/Nk has a finite, nonzero limit
lim(C/Nk) =1, (3.9

N

which we derive in Appendix B, starting again from the
exact, finite N equation for C, (3,7).
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APPENDIX A: N—oo LIMIT AND LENGTH OF CG
SYSTEM

The large N divergence of F/N, (2,14), for the
Coulomb gravitating system is easy to prove, The
crucial step is to realize that for all 8,b> 0, there
exists an integer ny> 1, such that K,(28vrb) <1, for all
n=mny; cf. Ref. 8, Fig, 9,7. Hence the last term in
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(2. 14) adds a positive contribution to F/N, since the
first 7, terms of this sum disappear as N —=, We,
therefore, conclude by inspection

F/N /~ (kT/2)logN!

In taking the N — « limit of U/N, C,/Nk, L/N, etc.,
we will make use of

N
Stye=N1 L Wt ~ 2Nt s sy, 20, (Ala)
n=nyg e
N
S;= Nt ,20 nt o~ NtlogN, .. 8,70, (Alb)
N
S,=N! g’)’o -t i N S 20, (Ale)
for all p>1 and any integer ng= 1, and
Ko(Z) 1 3 3
~
Ki(z) ==~ 2z 832 8z% (Ald)
K
2(z) ~14 3 + 3 3 (Ale)

K@) ==~ 2z 8z 8z%"

The first three are derived approximating the sums
by integrals, while the last two follow directly from
the asymptotic expansion of K,(z) (see Ref, 8, 9.7.2),

We then argue as follows: For all values of 8 and b
{(except zero), there exists some integer 7> 1 such
that, for all n= n,, 2=28vrb is large enough that the
Bessel function ratios present in (2, 14)—(2, 19) can be
replaced by their asymptotic expansions (Ald)—(Ale).
Thus we obtain for the CG 1D “atmosphere”

N
U/N o kT +@VD/N) T i+ (3/166VD)S,

n:no
- (3/168°0)S; (A2)
[dimensional constants are left out everywhere, cf.
(2.9)] and
C/NEk ~ 1+ (3/88VD)Sy 2~ (9/168°D)S,, (A3)

where the first #, terms of each sum in Egs, (2, 15) and
(2, 16) have dropped out since they vanish as N —,
Noting that

N
NS VI~ 2N/,

nany

(A4)

and taking (Ala)—(Alc) into account, we immediately
arrive at the results (2. 24) and (2. 25).

The length L of the system, defined in (2.17), with
V given by (2. 4), is calculated as follows:

N
XN= E Vis
is1
cf, (2,6), Substituting (A5) in (2.17) one finds that the
N-fold integral in the numerator yields a sum of N
terms, each term being the product of N one-dimen-
sional integrals, Dividing through by &, and after some
cancellation one gets

L= (e,/a),

n=

(A5)

(A6)

-

with
wnzfomd'r’rexp[- By +b/7)],
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q, given in (2, 10), and »n defined by (2. 8). The integral
w, is also found in the literature

w,=2(b/n)K,(28Vnb); (A7)
cf. Ref, T, 3.471-9, whence Eq. (2.18) readily follows,

In obtaining the large N limit of L/N and a [(2.18),
(2.19)] we follow the limiting procedure outlined at the
beginning of this appendix. We thus arrive at

L/N 7 VB{S; ;5 + (3/4BVD)Sy}, (A8)
and
a i, BR/4VD)S/[S 2 + (3/48VD)Sy).

Dividing the numerator and denominator in (A9) by S/,
and using {Ala)~—(Alc) to find

S1/Sy 2 o 1ogN/N'/2,
we finally deduce from (A8)—(A10):
L/N~2(/NY? and a = logN/NV/2,

(A9)

(A10)

APPENDIX B: EAP SYSTEM N — o SEPARATION
AND LIMIT

The @y for the EAP example can be separated into a
product of N single integrals by means of the nonlinear
transformation (3. 2) to z; variables.

The Jacobian matrix for the inverse transformation,
with components

. _exp(xi_xf)’ j<i,
W)= T 0, j>i,
is 1=1,

[a3)
N

(B1)

D

has zeros in all entries above the main diagonal, The
determinant of such a matrix is equal to the product of
its diagonal elements, i.e.,

N
det@) =1 z, (B2)
whence
N
det(®) =1/det@™) =1/11 z,, (B3)
i=1

This is actually the Jacobian determinant we need.
Thus, in terms of the new coordinates, the @ for the
EAP “fluid” becomes

L Lx w© N N
Qu=J, dzy-e- [; dgy - [ dzNexp(—BZ) zi>/.ﬂlzi,

jal i=
(B4)

where the lower limit ¢ enters as a result of (3. 2) and
the fixed-free boundary conditions. !! Equation (B4)
finally yields
N
Qn= n E{(nB), (B5)
n=
where we have replaced the symbol i by » for reasons of

consistency and E,(z) is the exponential integral defined
in (3.4).

The behavior of F/N for large N is determined with
the aid of the asymptotic formula 5.1.51 of Ref. 8 for
E,(z). Dropping the first n, terms of the sum in (3, 5)
—just as we did for the CG system—and using the Tay-
lor expansion of log(l +x), we find
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N
F/N o N1YY n+ (RT)'S; = (kT)'S,,

n=any

(B6)

where S| and S, have been defined in Appeudix A, They
are seen to vanish as N— =, while the sum in (B6) in-
creases proportionally to N? rendering F/N divergent

as the particle number approaches infinity.

In order to obtain U/N and C/Nk as N—, we invert
the asymptotic expansion mentioned above and obtain
e? 1, 3

~zg+l-—+—,
Ei(2) = z 2P

(B7)

Applying once more the limiting technigue of the pre-
vious appendix to Eq. (3.6) and (3.7) leads to

U/N N:;%izT+ N/2 ~ (RTY2S; + 3(R TS, (B8)
and
C/Nk 1~ 3 - 2kTS +9(kT)S,, (B9)

where we made use of (B7)., Finally, using (Ala)—(Alc)
again, results (3. 8) and (3. 9) follow immediately from
(B8) and (B9).

APPENDIX C: PURELY NEAREST NEIGHBOR CHAINS

The @, for the clearly separable fixed-free systems
with potential energy

N
Vixg)= 2 vilm -5 ), (¥
is simply
QN:qN, (CZ)
where
q= [ " expl[- po(r)]ar. (C3)

In contrast with the models discussed in Secs, 2 and 3,
the thermodynamic variables per pavticle do not depend
on N and coincide with those of the corresponding one-
dimensional subsystem,

Here, we evaluate the @ in closed form for two
representative examples with anharmonic potentials,
The first one is

N
V(XN):sZ1 Uy =% [+ 0% |xy = x4 [}, (C9)

for any constants b,s> 0. The ¢ integral (C3) for this
system is
q= fow dr exp[— B(r*+b%/7%)]
= (20'/%/$)Ky 14(28b°7%), (of3)

cf., e.g., Ref, 7, 3.478-4, where K, is the Bessel
function K, of order v=1/s [for s=1, see (2,10) with
n=1). The case s =2 is the “nearest neighbor”
Calogero potential, 12

From the knowledge of the @,, (C2), the C/Nk for
arbitrary s is found to vary monotonically from 1, at
T=0, to 3+1/s, at T=<, Thus, in the case s=2

C/Nk=1, forall T, (C6)
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This is reminiscent of a similar result obtained for the
oviginal Calogero model'® and adds to the peculiarities
of the #° + /7% potential,

The second example is

N
Vixy) = E {2900, — %) + 300, - x,4)'), (C7)
for any real y. The g integral (C3) is
S%Y“Z exp(*BKy ,,(¥*B), >0,
q =
2(n/2ﬁ> |7 |12 exp(y* A1y 14 (*B) + Ly 14 (B,
y< 0»
{C8)

where 1,, ,, are modified Bessel functions of the first
and second kind, The ¢ integral for 3 > 0 was known be-
fore, cf. Ref. 7, 3.323-3. When ¥ >0, (C7) becomes
the potential energy of a “hard-core” Fermi—Pasta—
Ulam “chain” (FPU), * under fixed free boundary con-
ditions. In the v <0 case the C/Nk, obtained analytical-
Ly from (C8) and (C2), is not a monotonic function of
the tewmperaturve, From the value 1, at 7=0, it passes
through a maximum and a minimum and asymptotically
approaches 2 as 7 — ==,

'E.H. Lieb and D, C, Mattis, Mathematical Physics in One
Dimension (Academic, New York, 1966). See the Introduction
in Chap. 1 for an overview of the subject.

INotably, the 2D Ising model with nonzero magnetic field,

"H. Takahashi, reprinted in Ref. 1 from Proc, Phys. —Math.
Soc. Japan, 24, 60 (1942),

F, Girsey, Proc. Cambridge Phil, Soc, 46, 182 (1950).

SE. Montroll, in Proceedings of International Symposium on
Contemporary Phystcs, ICTP, Trieste (June 1968) (IAEA,
Vienna, 1969), Vol. 1, p, 177,
®M. Kac, Phys. Fluids 2, 8 (1959),

.8, Gradshteyn and I, M, Ryzhik, Tables of Integrals, Sevies
and Products (Academic, New York, 1965), integral
3.324-1.

8M. Abramowitz and LA. Stegun, Handhook of AMathematical
Functions (Dover, New York, 1965}, Sec, 9.6,

For v¢>0, the integral (2,12) can be calculated exactly in
some simple cases, e.g., the harmonic (v) < +? and the
logarithmic interaction v(#) = logv.

D, Ruelle, Statistical Mechanics: Rigovous Results (Ben-
jamin, New York, 1969). See the discussion in Chap, 3
leading to Theorem 3.3.12,

“The hard core diameter 7 need not be zero here. For v(>0,
the lower limit of the ith integral in (B4) becomes c;
=Z% exp(jry) >4. And while the form of the form of the sub-
sequent finite N results will differ slightly from the zero-
hard-core case, it can be shown that no significant changes
occur in the large & behavior of the system.

2w, Calogero first solved exactly the quantum mechanical
N-body problem with harmonic plus inverse square pair
interactions between all particles, ¢f. F, Calogero, J. Math,
Phys. 12, 419 (1971).

13See last paragraph in Sec. 2 and Ref, 15, of Calogero’s
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Various authors have considered a conformal extension Cg, of the Galilei group which in some sense is the
nonrelativistic limit of the conformal extension of the Poincaré group, and have also established an
invariance group for the free-particle Schrodinger equation, the “Schrédinger group.” Here we establish
the most general conformal extension Cg of the Galilei group, which is found to be identical to the group
of the most general coordinate transformations that permit the use of noninertial frames of reference and
of curvilinear coordinates in Galilei-invariant theories, which was considered by one of us some time ago,
and is a gauge group containing a number of arbitrary functions. Both C; and the Schrodinger group are
subgroups of C; containing the Galilei group, but otherwise they do not overlap. The Hamilton-Jacobi
and Schrédinger equations for particles which are free or interact via inverse-square potentials are shown
to be invariant under the Schrodinger group, and a further invariance of the Hamilton-Jacobi equation is

established.

. INTRODUCTION

In 1909, Cunningham and Bateman® realized that
Maxwell’s equations are invariant not only under the
10-parameter Poincaré (= inhomogeneous Lorentz)
group, but under the wider 15-parameter conformal
group Cp. Since then, conformal invariance has been
considered in many areas of physics,2 and in recent
years has found renewed interest in high energy
physics.?®

For our present purposes, the general conformal
group C is most concisely defined as the group of all
transformations which in any Lorentz space with metric
tensor g,, locally leave the light cone invariant. How-
ever, in the following we shall mainly be interested in
Minkowski space and its metric tensor 7,,. The cor-
responding conformal group* Cp is more appropriately
called the conformal extension of the Poincaré group;
it is briefly discussed in Sec. III.

In connection with the renewed interest in conformal
invariance in particle physics, a conformal extension
of the Galilei group was considered in a study of
Galilei-invariant field theories by Hagen5 and this group
was studied in detail by Roman ef al,® Simultaneously,
it was realized by Niederer’ that the Schrédinger equa-
tion for a free particle is invariant under a wider group
of transformations (the “Schr&dinger group”) than the
Galilei group, identical with the group considered by
Hagen. The relation of this group to the conformal group
was studied by Barut® and Niederer, ® both of whom com-
pared the Schr@dinger group to the nonrelativistic limit
CG0 of the conformal extension of the Poincaré group.

AResearch supported under the U,S. —~Latin—American
Cooperative Program by the National Science Foundation,
U.S.A. under Grant No, INT 76-05769, and CONACYT,
Mexico, under Grant No, 1037,

Y On leave of absence from the University of Warsaw, Warsaw,
Poland,
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A similar study was undertaken for the Hamilton—
Jacobi equation by Boyer and Pefiafiel. !

Our own interest in Galilean analogs to the conformal
group Cp arose from a continuing investigation of pos-
sible dynamics of interacting particles.!! In Sec. III
we show that if such Galilean analogs are based on the
nonrelativistic analog of Eq. (1), a group C; very much
wider than that considered in Refs. 5—10 results, which
is identical with a group considered by one of us some
time ago in a different context, *? and is a gauge group
containing a number of arbitrary functions. Even if we
restrict it further than required by this analogy, we ob-
tain a gauge group which is wider than the Schrodinger
group. To obtain these results, it is convenient to use
a formalism for the Galilei group introduced earlier, 1%+
which is outlined in Sec. II. Both the latter and CG0 are
subgroups of C; containing the Galilei group, but other-
wise they do not overlap. In Sec. IV, we present a
simple proof of the invariance of the Hamilton—Jacobi
and Schrodinger equations for free particles or par-
ticles interacting via inverse-square potentials under
the Schrédinger group as well as a further invariance
of the Hamilton—Jacobi equation. The relation of our
results to previous work is discussed in Sec. V.

1l. UNIFIED TREATMENT OF THE POINCARE
AND GALILEI GROUPS

We consider the linear group of transformations of
the Cartesian space coordinates xl, xz, x3, and the time
t= xo

x™ =gk, A+ &, (1)
where the o ,’s and £ ’s are constant parameters. Here
and in the following, summation over repeated indices

is understood, Greek indices always range from 0 to 3,
and Roman ones from 1 to 3.

The Poincaré group is the group of transformation (1),
restricted by the condition®
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Tuv@ 0" = Tpo, (2p)

where 7,, is a nonsingular symmetric tensor with sig-
nature - 2. We can define its inverse by

nuPTfu :6: . (3}?)
Equations (2P) and (3P) imply
nu-vapu aal):npo. (4P)

We shall take the nonvanishing components of these ten-

sors to be
o =1, M= =7133=“C'27 (5P)
70=1, Mooy o-cl (6P)

The full inhomogeneous Galilei group is the group of
transformations (1), restricted by the conditions®

Zuvd ;0 = g, (2G)

o, ol =H" (4Q)
where the tensors g,, and #*" are singular; we can
choose as their nonvanishing components

& =1, {5G)

Mo oo, (6G)
and thus

GuH =0. (3G)

Clearly g,, and #*" are the limits ¢ -« of 7,, and
c2n*?, respectively; since they are independent, so
are the relations (2G) and (4G).®

Equations (2), (4)—~(6) imply that the Jacobian J of
transformation (1) equals + 1 in both cases. Thus both
the Poincaré and the Galilei group consist of four
parts, corresponding to the four combinations of the
signs of J and of a®. The part with J=sgna’ =1 forms
a subgroup, the proper orthochronous Poincaré and
Galilei group, respectively.

The space of the Poincaré group is metric, with a
metric tensor 7,,, and a four-dimensional infinitesi-
mal distance defined by

ds*=m,, dd* dx’. (7P)

For the Galilei group, we could also introduce such a
distance through

dst=g,, de* dx’, (7G)

However, the “metric” g, is singular, and thus the
space is not Riemannian; the separation (7G) is a pure
time interval, and assigns a separation zero to any two
simultaneous events.

Unlike 7,, and its inverse #*%, g,,, and #*” cannot be
used to lower and raise indices reversibly, and in gen-
eral co- and contravariant vectors are distinct quanti-
ties. Since the Christoffel symbols and the curvature
tensor defined from 7,, vanish, the metric space cha-
racterized by 7,, is flat. No analogous statements can
be made for the space characterized by g,,; however,
if we introduce vanishing affine connections I';, by de-
finition, the corresponding curvature tensor also
vanishes, and thus this affinely connected space also
is flat.
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RMAL EXTENSIONS OF THE
AND GALILEI GROUPS

1. CONF
POINCAR

The conformal extension Cp of the Poincaré group is
the group of all coordinate transformation

x"‘ ::x”‘(x") (8)

that connect line elements of the form

ds? = p=2(x")n,, dx* dx* =7, dx* dx* (9P)

with each other, *''7 and thus preserve the light cones
ds® =0. Clearly, the Poincaré transformations form

a subgroup; another subgroup is that of the scale trans-
formations (dilatations)

XM = Cl*,

It can be shown that the most general conformal trans~

formation is the product of a Poincaré transformation

and a “Haantjes transformation” (product of dilatations

and acceleration transformations)
o c-llunpaxaxu

TC 20 T+ Cy ol P ¥

(10P)

™ (11p)
where C and I are five arbitrary constant parameters,
and thus the conformal extension of the Poincaré group
is a 15-parameter group. The Galilean limit of this
transformation (the “Galilean Haantjes transformation”)
is

x* — Clp g °x°
no_ _8po:
S T2 PP + Clg T P g™ (11Ga)
which from Eq. (5G) is equivalent to
, , Cr-1f
t e T = (11Gb)

This set of transformations together with the Galilei
transformations forms a 15-parameter group C; o Which
has a structure very similar to that of the conformal
extension of the Poincaré group, and has therefore been
considered occasionally as the appropriate definition of
the Galilean conformal group.® It is, however, by no
means the most general conformal extension of the
Galilei group.

Before proceeding with a study of this extension, we
note that C, in the interpretation adopted here? is to be
understood as a group of transformations on the coordi-
nates, but not on the metric tensor. Therefore, ds’ is
not an invariant and 7,, does not equal 1’,,, but instead
is given by

- LY

nﬂv :%%Wpuz¢-znuu7 (IZP)
where the factor of n,, arises from the transformation
of dx* dx’, i.e., the expression {9P) arises from
Ny d¥™ dx” rather than 1/, dx™ dx’. A similar inter-
pretation must be adopted for the transformations of
the conformal extension of the Galilei group.

_ We can define a “contravariant” ?7““’ as the inverse of
74, from a relation corresponding to (3P) to obtain

- ox* ox¥
T = e =0, (13p)
which does not equal n™*.
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To obtain the most general extension of the Galilei
group, we proceed directly from the Galilean analog
of preservation of light cones. In the limit ¢ - the
light cones ds® =0 with ds’ given by (7P) degenerate to
planes of constant time (absolute simultaneity), for
which ds? =0 with the Galilean ds’ (7G). The most gen-
eral transformations C; maintaining this condition are

¥ =x"(x%, dax"/dx*>0 for all x°,

or <0 for all x°, (14Ga)

2" =x"" ("), (14Gb)

Clearly, these transformations contain both the Galilei
group and the group (11G) as special cases, but are
much more general.

With the interpretation adopted above, we now have
ds® =¢-(x")g,, dx* dx’ = g,, dx* dx*, (9G)
where

— ax’ ax’ R

Suv :"'5)(71 *ax—:rganCP Zguu- (12G)
However, if we wish to define a “contravariant” #**
from a relation corresponding to (3G) in analogy to the
procedure used above to obtain (13P), we only get

ax* 9x”

ax®ax’ i

Y =Wz , (13G)
which is not necessarily proportional to #*” and contains
an arbitrary factor w*(x*) because of the degenerate

form of (3G). However, because of the form (14G) of the

coordinate transformations we have at least

P op™ — 9, (15G)

The relations (14G) are precisely those obtained in
Ref. 12 as the most general coordinate transformations
allowed that permit the use of noninertial frames of re-
ference and curvilinear coordinates without changing
the physical content of Galilei-invariant theories. The
only restriction on (analytical) coordinate transforma-
tions imposed there was the exclusion of coordinate
systems for which signals emitted at a time ¢, could
arrive at some points of the systems at { >/, and at
others at 7 <t

It should be noted that imposition of the corresponding
restriction on coordinate transformations for Poincaré-
invariant theories does not lead to the conformal ex-
tension of the Poincar@ group Cp. The condition on the
description of signals stated above implies (in addition
to preservation of light cones) that the space- or time-
like character of separations {i.e., the sign of ds® in
(9P)] is maintained, a condition not satisfied by the
acceleration transformations. This condition leads to
a set of restrictions on the transformed metric tensor
nh,. 11 In the Galilei case, no such additional condi-
tion is implied, due to the collapse of the cone to a
plane.

Some time ago, Zeeman?? showed that the require-
ment of preservation of light cones in Minkowski space
and of orientation of timelike vectors implies the “cau-
sality group,” defined as the product of the orthochro-
nous Poincaré group and the dilatation group. This re-
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sult actually is an immediate consequence of the long-
known fact that Cp is the widest group of transforma-
tions in Minkowski space which preserves the light
cones, but that the subgroups of acceleration transfor-
mations and of antichronous Poincaré transformations
do not preserve time orientation. A requirement of
“causality” for Newtonian space—time analogous to
Zeeman’s for Minkowski space would demand preser-
vation of absolute simultaneity and of time orientation,
and thus the subgroup of orthochronous transformations
of C; defined by (14).

Thus Zeeman’s statement “causality implies the
Lorentz group”’ is valid only in Minkowski space; fur-
thermore, as already discussed in Ref. 12 (Footnote
{49) in connection with the transformations (14Ga), it is
too strong a requirement to demand preservation of time
orientation, “since this would assign physical meaning
to the obviously conventional orientation of the time
axis.... Allowing both signs does not contradict the
‘causality condition’ that a signal should not arrive
earlier than it was emitted, which can be looked upon
as a definition either of ‘ signal’ or of ‘earlier’.”
Therefore antichronous transformations need not be
excluded, and the physically required causality condi-
tions do not impose any restrictions on C;, and in the
case of Cp only exclude the acceleration transforma-
tions and impose the restrictions on 7, mentioned
above.

Because of the difference between the relation (13P)
and (13G) there is a clear qualitative difference between
the group of transformations C; allowed by a conformal
extension of the Galilei group and the group Cg obtained
as the Galilean limit of Gp. On the other hand, we can
subject the transformations of C; to arbitrary restric-
tions to achieve a closer similarity to, or even identity
with, the group Cg .

The weakest restriction on the transformations (14G)
that reduces Eq. (13G) to a form reminiscent of (13P)
is the requirement

ﬁuv = QZ(XQ)”IHU .

This only restricts the transformations (14Gb), but not
(14Ga). From (13G) and (14G) we obtain

(18G)

ax™ ox" 2\?

ax™ax’" :<Z‘) &, (17a)
which implies

ax™ ax™ [\

no restrictions are imposed on 8x™/3x",

The most general transformation satisfying the con-
dition (17Gb) is

a™ (x0% + a™ (x0)e (xO)x"x"

M= PO e T T, (18Ga)
where
a”,a", =0"" (18Gb)

which together with Eq. (14Ga) defines a group C¢,
and for which
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Qx") Fi(x%)

) (A + 20 + xR

(19G)

The following distinct subgroups of the transforma-
tions (14Ga) and (18G), corresponding to simple forms
of the functions F and £", are easily recognized [where
we always first state the transformation {14Ga), written
in terms of the time variables, and then the values of
some of the functions and parameters appearing in
{18Ga); those not specified explicitly are unrestricted
constants, and all quantities not given explicitly as
functions of / are understood to be constants]:

I. The Galilei group:
Pt
F=1, € =0, t"=a™f+£"

II. The Galilean Haantjes transformation (11G):

t’——————g-—t ;
C-1%
‘(C—l"t)z’ Q@ =0p

. - lth

—_ n J—

€=0 ¢ €=

III. The three-~-dimensional conformal transformation:

t'=t;

b

F=1, a™ =8I t"=0.

IV. The “Schr8dinger dilatation™":
t'=C-;
F=C o™ =96/, €=0, "=0.

V. The “Schrodinger expansion”’:
t’'=Ft;
F=(1-0%", a™ =38 € =0, £"=0.

Clearly there are many more subgroups. In parti-
cular, it should be noted that since any dilatations of x°
and of the x™ are independent, their ratio is arbitrary,
and thus the dilatation subgroup of the Haantjes trans-
formations and the Schrddinger dilatations are only two
particular cases of another subgroup of C; (overlapping
the subgroup II and containing IV):

VI. The general dilatations:

t' =B -lf;
F:D-l, amr‘:é:" erZO: &mzo-

We can further restrict our transformations by re-

quiring in Eq. (16G)
Q1= (x9), (20Ga)

However, this still leaves an arbitrariness beyond that
of C, because of the presence of the arbitrary function
w(x”), and indeed imposes no restriction whatever on
the transformation (18G). To obtain the full Galilean
analogue to Eq. (13P), we must require in addition to
(20Ga) that

wx) =1, (20Gb)
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since these relations imply
ax* ox¥

i =5 = ¢ (21G)
the difference between (13P) and (21G) then (apart from
the fact that #*” is degenerate) is that in the Galilean

case ¢ can only be a function of ¥* alone.

Therefore Eqs. (20G) and (19G) require that € van-
ishes, and thus the transformations (18G) reduces to

2™ = F(xa™ ()" + £(xY), (22G)

This is the group of orthogonal coordinate systems un-
dergoing arbitrary accelerations as well as time-depen-
dent dilatations. It, together with the time transforma-
tions (14Ga), forms a group C;, the “Leibniz group”
recently discussed by Barbour and Bertotti in a differ-
ent context.?! C, includes the subgroups I, IV, and V
listed above, but both the Galilean acceleration trans-
formation and the three-dimensional conformal trans-
formation are excluded. The product of these three
subgroups is the Schrodinger group C,,
, L+ £
TCM1-10 + 8]
m_ o™ +a"t + £
-+ ]
[where all parameters are constants, and the a¢™;’s are
subject to conditions (18Gb)], which thus is a subgroup
both of the conformal extension C; of the Galilei group
and of its subgroup C; restricted by Eq. (20G). How-
ever, it is not a subgroup of the group C¢, discussed
above (the product of the Galilei transformation and
the Galilean Haantjes transformations). To obtain this
group, we can not require condition (20G), but must
instead only demand (16G) and restrict the transforma-
tion group (18G) to the product of the subgroups I and
II listed above.

(23G)

As noted before, both Cp and CGo are 15-parameter
groups. Since from Eq. (18Gb) only three of the a™, are
independent, the Schrddinger group C; is a 12-param-
eter group. On the other hand, the conformal extension
Ce of the Galilei group defined by (14G) contains four
arbitrary functions x’°(x®) and x™(+*) and its restricted
forms defined by (14Ga) and (16G) or (20G) contain 11
or 8 arbitrary functions of x' alone, respectively [x"°,
F, t", and o™ in both cases, plus € in the case (18G)];
thus they all are gauge groups.

IV. THE INVARIANCE GROUPS OF THE
SCHRODINGER AND THE HAMILTON-JACOBI
EQUATION

As noted in the Introduction, a number of authors have
recently investigated the invariance groups of the free-
particle Schrddinger equation

oY, B
iat+2mV¢_0 (24)

and Hamilton—Jacobi equation

aS 1 39S oS
3t amar i = O (25)

All of these investigations of the Schr&dinger equation
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worked with Eg. (24) and with finite transformations.
However, it is much more convenient to work with the
variational principle 6/ =0 for Eq. (24), where

= - %)

7 ooy* 3y ]d,,x, (26)

T2m ax ox
and with infinitesimal transformations.

Using the Galilean tensors discussed in Sec. II, Eqgs.
(25) and (26) can be written

oS , 0S 38

Si‘zm e =0 @7
and
ay* 3y
I /[22 (d) -V )
7, 3% 3y
+T‘Z7n_hp Ex—”-a;;] dx. (28)

Before considering the various conformal extensions
of the Galilei group introduced in Sec. III, it will be
instructive to consider arbitrary coordinate transforma-
tions. Then in Eq. (28) we must also take into account
that the integrand must transform as a scalar density
rather than a scalar (a distinction which is not relevant
for the Galilei group).22 In a metric space, this is
achieved by introducing the square root of the absolute
value of the determinant of the metric in the integrand,
While the four-dimensional space considered here does
not have a nonsingular metric, the general coordinate
transformations (14G} still have a nonvanishing
Jacobian

Clax™) " ax'm
el rra b= rgl 29)

and we can use a factor J-! in the integrand to obtain
the desired transformation property. This factor equals
lgyoin! =112, where

h=deth™. (30)

This (apart from notation) is identical to the standard
procedure adopted for obtaining the Schrddinger equa-
tion in curvilinear coordinates (where gyo=1, and

— k™ is the inverse of the metric tensor of 3-space).

Thus Eq. (28) is replaced by

o [ 05 - 5)

woL,0y* 3
a1 PRI s

As discussed in Sec. H1, we consider conformal trans-
formations as transformations on the coordinates alone,
but not on the'tensors g,, and Y, in conformity with
the usual interpretation of transformations under the
group C,. Thus we have to investigate whether it is
possible to maintain the form of the Hamilton—Jacobi
and of the Schrddinger equation under these conditions.
Clearly, for the Hamilton—Jacobi equation this will be
the case if in Eq. (27) a transformation of the coordi-
nates and of S will yield an equation of the same form,
possibly multiplied by an over-all factor. For invari-
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ance of the Schrddinger equation following from the va-
riational principle (31), on the other hand, it is neces-
sary that the transformation of the coordinates (includ-
ing the volume element) and of ¥ will leave the integrand
of (31) invariant up to a divergence. It should be noted
that with the interpretation adopted here the factor
[ggolhl‘l]”2 does not change under conformal transfor-
mations, but that d*x changes to J d*y.

This interpretation has no effect on the Galilei invari-
ance of the equations. However, it is clear that the
equations are not invariant under the full group C; which
involves the general transformations (14G), or even
under the transformations restricted only by the condi-
tion (18G) leading to (18Ga). We shall therefore investi-
gate instead the possible invariance under the various
subgroups.

We first consider the well-known case of subgroup
I, i.e., the behavior of Egs. (25) or (27) and (28) or
(31) under Galilei transformations. Clearly, space and
time translations as well as rotations leave them un-
changed, with S and ¥ transforming as scalars. How-
ever, for the Galilei “boosts”

t=t, x™m=x"+e", (32)
Eq. (25) becomes

35, oS
5?+€ ax”

1 2S5 oS8

*omaxmox7 O (59

This can easily be seen to be of the form (25) in the
transformed quantities if we take

§'=8 +me"x", (34)

Applying the transformations (32) to Eq. (28), we

obtain
y* _ wS e z,b r w
7 azp* EE ,
+ 2 5 3 ]d‘*x ) (35)

To establish the invariance of the Schrddinger equation,
it is sufficient to establishthe invariance of the vari-
ational principle under infinitesimal transformations.
It can easily be verified that, for infinitesimal ¢", Eq.
(35) is of the form (28) in the transformed quantities if
we take

P =9 +irtmex "), (36)

which is the infinitesimal form of multiplication of
by a phase factor.

Now we consider the general dilatations VI. Then Eq.
(25) becomes

1as 1 8S as
Bot' " 2mDt ox"” ax"‘o‘ (37)

This is of the same form as Eq. (25) provided that we
choose

S’:BD'ZS, (38)

and thus the free-particle Hamilton—Jacobi equation is
invariant under VI (up to a factor D*B?) as well as un-
der its subgroup IV.
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For Eq. (31), the transformations VI yield

Bl oy P
":f [‘2‘53(""67‘ v az')

r 1oy aw] 3 b
—_——e — L . 39

oo P ox™ ax” | BDd (39)
This is of the form (26) for the transformed quantities
only if

B=D? ' =D¥%y, (40)

i.e., only for the subgroup IV (with D=C) of the trans-
formations VI, 2

Now we consider the subgroup V. Then Eq. (25)
becomes

L <£+l°x"———as 4l

38 8§
A= \37 PP ):O' (41)

2m ax” ax™
It can easily be verified that this reduces to the form
(25) apart from an irrelevant over-all factor (1 - 7%)~
provided that we choose
, mllx"x"
= . 42
S =Sty (42)

To investigate the invariance of Eq. (31) under the
subgroup V, it is simpler to consider only infinitesi-
mal transformations, with I~ X, Then Eq. (31) is
transformed to

AT
1:/{5[@&‘, el ,)(1+2m

(-]
m oy oy

Tomox” ax”

(1+ 2>¢)}(1 - 5xt) dx’, (43)

which is of the form (26) for the transformed quantities
if we choose

P = z/)<1 - %)\t—%—g—x’x’) = w(l - %M’-Z;—;ﬂx”x”)e
(44)

Thus the Schrddinger equation is invariant under the
Schrddinger group, and the Hamilton—Jacobi equation
is invariant under a 13-parameter group, the product
of the subgroups I, V, and VI. Neither equation is in-
variant under subgroups II or IIL

Obviously, these statements remain correct if we
consider N noninteracting particles instead of just one
free particle. In this case, of course, there exist addi-
tional transformations that leave the equations invariant
which, however, are of no interest for our discussion.

In the presence of interactions Eq. (25) is replaced
by

B 4 1 os oS

At pop 2my, 0x," 3x,”

and Eq. (26) by
(2 %) 73y oy ]
I‘./[Zi(‘p ot =V 5r) " L et mr WY a'x,
(46)

with corresponding changes in the subsequent equations.
For interactions of the form

+ V=0, (45)
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N

V=i 2 Vb, =l - 6E- D1 @
k=

these equations are, of course, invariant under the

Galilei transformations I regardless of the form of V.

It can readily be verified that the Hamilton—Jacobi

equation remains invariant under the transformations

V and VI, and the Schrddinger equation under V and IV,

however, only if

Vir = Ckz”!;%- (48)

The invariance of this particular potential was not re-
cognized in Ref. 7 in which the name “Schr8dinger
group’ was suggested (but was noted later by Burdet
and Perrin®®). On the other hand, it was known to
Jacobi®® that the equations of motion of a Newtonian N-
body system with interactions of the form (48) are in-
variant under the transformations IV and V in addition
to those of the Galilei group, and therefore the
Schrodinger group should more appropriately be called
the Jacobi—Schrodinger group.

V. DISCUSSION

In Sec. I we briefly discussed the conformal exten-
sion Cp of the Poincaré group. X can be characterized
by a tensor 7,, related to the Minkowski metric 7,, by
Eq. (12P); its inverse 7*” is given by (13P). The trans-
formations of Cp are explicitly given by Eq. (11P),
which has the simple Galilean limit Cg given by Eqgs.
(11G). Both Cp and Cg are 15-parameter groups.

However, we can instead define conformal extensions
of the Galilei group directly. The most general con-
formal extension C; is given by the transformations
(14G), for which the tensor g,, is related to the Galilean
“metric” g,, by Eq. (12G), which is analogous to Eq.
(13P) and indeed is its Galilean limit. However, since
neither g,, nor g,, possess an inverse, the analog ek
of I"¥ requires an independent definition, which is only
restricted by the conformal analog of Eq. (3G). The
most general #*” allowed by this satisfies Eq. (13G),
which is a much less restrictive relation between 7**
and 7 than the corresponding relation (13P) between
7Y and 7*”. A relation more closely analogous to (13P)
is Eq. (16G), which together with (12G) detfines a group
CG1 of transformations given by Eqs. (14Ga) and (18G).
An even closer analogy with (13P) is obtained by im-
posing Eg. (21G), which together with (12G) defines a
group of transformations C, given by Egs. (14Ga) and
(22G). From their definitions, C, is a subgroup of Cg,,
which is a subgroup of C;. All three groups are gauge
groups.

If the arbitrary functions in these groups are restricted
in various ways, a number of subgroups can be obtained.
The most important ones are the 15-parameter group
Cco, which is a subgroup of CG1’ but not of C;, and the
12-parameter Jacobi—~Schridinger group Cs, which is
a subgroup of C;. Both Cg o and Cs contain the Galilei
group as a subgroup, but otherwise they do not overlap.

In Sec. IV we established the invariance of the free-
particle Schrodinger equation under Cs by investigating
the behavior of the variational principle (28) for this
equation under the infinitesimal transformations of Cs.
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Unlike other authors, °~® we did not have to consider the
mass m as a quantity subject to transformations, nor
did we have to define new transformations from those
of Cco to absorb a change of mass into the coordinate
transformations (as was done in Ref, 8). We also es-
tablished the invariance of the free-particle Hamilton—
Jacobi equation under a 13-parameter group containing
Cs.

The invariance of the variational principle (26) under
a 12-parameter group, by Noether’s theorem, implies
the existence of 12 local conservation laws. These will
be discussed elsewhere, as will be the corresponding
classical laws for the Hamilton—Jacobi equation. ¢

The close correspondence between the Hamilton—
Jacobi and the Schridinger equation has, of course,
been known for half a century, and our results further
illustrate this correspondence. 2

The behavior of the Schrédinger equation under arbi-
trary accelerations, i.e., under the group C;,, is more
appropriately discussed in connection with a considera-
tion of the equivalence principle, and is the subject of
a paper by J. Stachel in preparation.2?+%

The various extensions of the Galilei group consi-
dered here give rise to two-body invariants of impor-
tance in a generalized dynamics which will be discussed
elsewhere?® in connection with the two-body invariants
of the Galilei group found earlier, 131

ACKNOWLEDGMENTS

We are indebted to Dr. J. Stachel and Dr. H, Goenner
for many helpful discussions.

!E. Cunningham, Proc. London Math, Soc. 8, 77 (1909);

H. Bateman, Proc. London Math, Soc. 8, 223 (1910),

For a brief review of the conformal group and its older
applications in physics see T. Fulton, F. Rohrlich, and

L. Witten, Rev. Mod, Phys. 34, 442 (1962),

See, e,g., Lectuves in Theoretical Physics, edited by A,O.
Barut and W, E, Brittin (Gordon and Breach, New York,
1971), Vol, XIII; Scale and Conformal Symmetry in Hadvon
Physics, edited by K. Gatto (Wiley, New York, 1973).

{For a brief discussion of the mathematical properties of the
conformal group see J. Plebafiski, On the Genevators of

the N-Dimensional Pseudo-Unitary and Pseudo-Ovthogonal
Group (Centro de Investigacidn y de Estudios Avanzados del
Instituto Politécnico Nacional, Mexico City, 1966), Appendix,
A more detailed discussion is given in J, Plebatiski, On Con-
formally Equivalent Riemannian Spaces (C.I,E. A.1.P.N.,
Mexico City, 1967).

5C.R. Hagen, Phys. Rev. D 5, 377 (1972).

488 J. Math. Phys., Vol. 19, No. 2, February 1978

P, Roman, J,J. Aghassi, R, M. Santilli, and P. L.
Huddleston, Nuovo Cimento A 12, 186 (1972},

"U. Niederer, Helv. Phys, Acta 45, 802 (1972).
8A,0. Barut, Helv, Phys. Acta 46, 496 (1973).

%y, Niederer, Helv, Phys, Acta 47, 119 (1974).

V¢, R. Boyer and M., Pelafiel N, , Nuovo Cimento B 31, 195
(1976},

Up, Havas and J. Plebafiski, Bull, Am, Phys. Soc. 5, 433
(1960) and several papers in preparation,

2p, Havas, Rev, Mod. Phys. 36, 938 (1964), Sec, V.

5Ref, 12, Sec. II.

Yp, flavas, in Problems in the Foundations of Physics, edited
by M. Bunge (Springer-Verlag, Berlin-Heidelberg-New York,
1971), p. 31,

151 Sees. H and III, corresponding formulas for the Poincaré
and the Galilei group (or their extensions) will be designated
by P and G, respectively; formulas without a letter hold for
both cases.

18These tensors were first introduced by K. Friedrichs,

Math. Ann. 98, 966 (1927), A related covariant formulation
of Newtonian theory was given earlier by E. Cartan, Ann,
Ecole Norm. 40, 325 (1923); 41, 1 (1924).

1In Ref, 4, ¢~% is expressed in terms of dimensionless vari-
ables x?/A where all x? are chosen to have dimensions of
length, For our present purposes, such a representation is
not convenient,

183ce, e,g., M. Laue, Die Relativititstheorie (Vieweg,
Braunschweig, 1923), 2nd ed., Vol. 2, See. 5, or C. Mgller,
The Theory of Relativity (Oxford U. P, , Oxford, 1952),

Sec. 30.

197 Ref. 12, the conditions are stated in Egs. (1125); how-
ever, in the last determinant the fourth row and the column
should have been omitted.

WE, C. Zeeman, J. Math, Phys. 5, 490 (1964).

43, B. Barbour and B. Bertotti, Nuovo Cimento B 38, 1
(1977).

2T6 complete the formally invariant expression for Eq. (28),
8/8t should be replaced by a Lie derivative [ y in terms of
a velocity field. Since we will not make any use of it here,
we shall not introduce it explicitly; compare a paper (in
preparation) by J, Stachel on the Schrodinger equation in
accelerated frames of reference,

BActually, the second of conditions (40) is not necessary for
the invariance of 6I=0 and thus (up to a factor) of the
Schrddinger equation, but only for that of I (which is needed
only if we wish to be able to use Noether’s theorem dis-
cussed in Sec, V).

G, Burdet and M, Perrin, Lett, Nuovo Cimento 4, 651 (1972).

C. G, d, Jacobi, Vorvlesungen iber Dynamik, edited by A.
Clebsch (1866) (2nd ed. by E. Lottner), Gesammelle Werke
(Reimer, Berlin, 1884), supplement volume, 4th Lecture.

%P, Havas (submitted to Helv. Phys, Acta).

YThis correspondence has recently been extended to the prob-
lem of separation of variables by P. Havas, J, Math, Phys.
16, 1961, 2476 (1975), and some of our results may be appli~
cable to this problem, as will be discussed elsewhere.

8For discussions of the case of constant acceleration from
different points of view see Ref, 8 and G. Rosen, Am. J.,
Phys. 40, 683 (1972).

29p, Havas and J, Plebafski (to be published shortly),

P. Havas and J. Plebariski 488



Coping with different languages in the null tetrad
formulation of general relativity
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We describe how, in spite of differing conventions regarding spacetime signature, sign of the Riemann
tensor, and definition of the Ricci tensor, we were able to construct a precise dictionary relating various
notations which are being employed in the null tetrad formulation of general relativity. In addition, we
give in appendices the forms assumed by the Newman—Penrose equations and the corresponding abstract
structural equations when nontraditional assumptions are made with respect to the three sign conventions.

While I have never worried much about changing con-
ventions, it would appear that many people do, for I am
frequency asked “But exactly what does that mean in
terms of my favorite language ?” The task, of course,
would be quite trivial were it not for differing sign con-
ventions, especially with regard to the signature of the
metric, for then one could more easily construct a
dictionary of notation for the petitioner.

If you tend toward desperation each time you are faced
with the desire to translate results from one language
to another, where the signatures as well as the notations
happen to differ in the two languages, then this paper
may bring you some relief.

. EFFECT OF CHANGE OF SIGNATURE UPON
THE NEWMAN-PENROSE VARIABLES

Under a change of spacetime signature the coordinate
components of the metric tensor g4z, the inverse metric
tensor g*#, the Riemann tensor! R 5, and the curvature
scalar R change sign, while the coordinate components
of the Ricci tensor R, and the traceless part of the
Riccei tensor

Sas :RaB -_— éRgolB
remain unchanged.

If (4,7, My, m,) constitute a null tetrad, one?® real
null vector, say !,, changes sign under a change of
spacetime signature, while the others, n,, m,, and
Mgy, remain unchanged. On the other hand, I* remains
unchanged, while #n®, m® and m® change sign. One may
infer that the Newman— Penrose® D, kK, €, and 7 remain
unchanged under a change of spacetime signature, while
A, 5, © and all the other spin coefficients change sign.
These inferences are based upon the observation that
those languages which assume signature 4+ 2 employ
Ly;om®, lg,on® + g, o %, ng4m°, Where those languages
which assume signature — 2 employ s, ,m®, Ig n°
+mp; o m?, and mg n®, respectively. As tar as the curva-
ture quantities are concerned, A, ¥, ¥, ¥, ¥; and P,
change sign, while all the $’s remain unchanged. Of
course, we must assume here that in the unlikely event
Newman and Penrose were actually to change to signa~
ture + 2 they would continue to use the notation ¢, ..., ¥

0n sabbatical leave from the Illinois Institute of Technology,
Dept. of Physics, Chicago, Illinois 60616,
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for the corvesponding bivector components of the Weyl
conform tensor, and that they would continue to use
Doy g1y 00, oy fOV the covresponding bivector com-
ponents of the traceless Ricci part of the Riemann
tensor.

It should be pointed out that there are other conven-
tions besides spacetime signature which effect the
result, The conventions regarding over-all sign of the
Riemann tensor may differ, as may the conventions con-
cerning which indices are contracted in forming the
Ricci tensor from the Riemann tensor.

In Table I we idenfify the conventions currently being
employed by various research groups. The spacetime
signature will be denoted by 2¢;. Thus, (+++-) cor-
responds to £, =+1, while (- - - +) corresponds to &,
=-1. Heuce, for example, Eisenhart’s convention?
corresponds to £, =-1,

The over-all sign of the Riemann tensor is determined
by €,=x1, where

]
Ey;aﬂ‘ Ew;Ba ZEZRaBysg a
For Eisenhart, g, =-1,

We shall say €;=+1 if the Ricci tensor is formed by
contracting over the second and fourth (or first and
third) indices of the Riemann tensor. On the other hand,
£4==1 if the contraction is over the first and fourth
{or second and third) indices. For Eisenhart, g5=-1,

While it will not effect the considerations of this
paper, it should be remarked that the introduction of the
stress tensor obliges one to decide upon the sign ¢, of
E*T £ for a timelike unit vector £* and ordinary mat-
ter. Once g, is chosen, the relative signof 7,, and R,
- %Rgu,, is automatically equal to = £y£,£5E,. Plebanski
and I have used g, =—1, but it is my intention to switch
to £, =+1 in the future in order to get compiete agree-
ment with Hauser’s language.

TABLE I. Values of (€,&,,£,,€,) implicit in four languages
currently used by researchers in general relativity.

Language €1 £y €3 €4
Hauser®(IIT) + + + +
Newman—Penrose’ -~ +
Debever® - - - +
Plebanski’ + - — -
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TABLE II. Notational correspondences which would hold if conventions were identical, i.e., if (€4,£5,€y were the same,

Hauser Newman—  Debever Debever Hauser Newman— Debever Debever
) Penrose (original} {new) Plebaiski iy y] Penrose (original)  (new) Plebanski
kg, Iy 1y Z, e, v K —%0% « —T 494
My % g 2 'y Um T ~30% T =Ty
to Mo Mg Mg ely Ut o 0% o —Tiz
24 My Mg, "y e’y vy p 0% p -y
ke Ie I 1= €,° u 2¢ -0’ 2€ Typg+ gy
me ne n® ne e, Uy 2y - 2y Tyag+ Tagy
= me me me PR o 26 o3, 28 Typ+ Toto
[ me m® me e g+ 20 o’ Za Ty + Ty
d, D ,3 ,1 .4 w, T -0ty ™ =Ty
d, A ,0 52 »3 W, v —z0%, v =T33
dy 5 —.2 »3 »2 wy # 3oty B =T
dyg* 5 -,1 ! ,1 we* A 1ol A ~Tyyy
p, €+¢€ iQ, r3
P, Y+y i@ Y=
p, B+ iQ, B-a
Pyx a+B i@, o-3
C, =¥ 3Cy -Cy 3C® Sre —2&y Eg - 2Byj Cyy
Cy L2 1€y Cp zCc® Set 2%y - Ey3 —2E; Cy
Cy -, 3Cyy ~Cy3 3C@ Sy — 28, —E; —2E; Cyy
€y ¥3 2Cy3 Cy s Spe* = 2% - E51 — 2By Can
C. -y 3Cx —Cy scw Spe* — 2%y 1Eg; —2Ey Cy
Spt ~2%y, E3; —2Ey; Cx
R 24A R R R Syxe* — 2%y = By —2E4 Cy
Sme* —2&y — &5 ~2Eg; Cy
v -30? 0 -Ty Smm —2%y Ey —2E3 Cys
u - 20, Ty9+ Ty
w ~%dt o5 -Ty k 8® 8, ¢
m 6° 0y &
B, z? z3 GSy) t 6! 05 et
By 2z° -z (=$;) t* o? 8y e’
B, 2t VA &Sy

Clearly a change of g, effects all curvature quantities,
while a change of €; effects just the Ricci tensor and the
Ricci scalar, Knowing how all quantities transform un-
der changes of ¢4, &, and g3, it is rather easy to re-
express the Newman—Penrose equations in terms of
general values of €;, €, and £;. (See Appendix A.) It is
accordingly easy to deduce the correspondence between
notations both as they would be if all conventions agreed
(see Table II) and as they actually are in view of the
differing conventions (see Table III). In our tables we
compare the Illinois Institute of Technology (IIT) nota-
tion, developed by I. Hauser,’ the Newman— Penrose
notation, the notation of R. Debever® {which appears to
be in a state of flux), and the notation of J. F.
Plebanski, ’

Il. EFFECT OF CHANGE OF SIGNATURE UPON
THE MORE ABSTRACT STRUCTURAL EQUATIONS

We at IIT use (&%, m®,t*,t*%) in place of

490 J. Math. Phys., Vol. 19, No. 2, February 1978

(I*,n*, m®, m®). This is not the result of innate perver-
sity, but is simply due to the fact that after a number of
years in particle theory my interest in general relativity
was rekindled about 1968, when I happened to notice
R,P. Kerr’s famous 17 page paper. ? Sheer curiosity
concerning how he got his solution prompted me to set
up a tetrad formalism using Kerr’s notation and conven-
tions. I also managed fo interest I. Bauser in my ef-
forts, and he devised an elaborate null tetrad machin-
ery, most of which has never been published, but which
our small relativity group at IIT uses. It was consider-
ably later® that we were exposed to the Newman—Penrose
approach to null tetrads, specifically when we received
a copy of the Ph,D. thesis of W, Kinnersley. Today we
are much better acquainted with the literature than we
were at the time we were getting started, and perhaps

if we were developing the IIT formalism today we would
choose to employ €, =&, =¢g3=~1, However, as a result
of working with £y =€, =¢3=+1 for so long, we do feel
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TABLE III. Notational correspondences which actually hold in view of differing conventions, i.e., differing (£4,£5,€3.

Hauser Newman—  Debever Debever Hauser Newman— Debever Debever ;
(IrT) Penrose (original) {(new) Plebanski (1iT) Penrose {original) (new) Plebanski
Rq -1, -1, -1 e, vy K —-30% K =Ty
g, Ny g N &ty Vpy -7 30% -7 = Tya3
ta My, my My ely vt - -30% -0 =Ty
tg My Mg g, e’y vk -p -304 -p -T'n
ke I o 1 e, A 2¢ —a% 2¢ Tiog+ Ty
me —ne —n® —n® e Uy -2y 03 -2y Tyog+Tags
o —m® —m® —m® e, u; —-2B -a? —28 Tiop+ Ty
it —m® —m —m® ey Uy x —2a - 0'31 - 20 Lyoy +Tay
d, D ,3 ,1 ,4 wy T — 10l T — Ty
d, -A —,0 —,2 ,3 W, -v 1oty - — Ty
d, -8 b2 -,3 ,2 w, - —30l, - =T33
dy -3 ,1 - ,4 ,1 wyk - -3l -2 —Tyy
p, €+e€ iQ, €—-¢
P, ~ty+7) iQ,, --7
P, - @+a) iQ, —{B-a)
Pyx —(@+B) iQ,* -(@-B
G, =¥y 3Cy —Cy -3C® Ser —2&g Eql — 2By} Cu
o U iCy; Cos 1% Set 2%y 2% 2E3 Ca
Cy =¥ 3Cyy —Cy3 ~3C® Sy —2%p -E; ~2Ey3 Co
C4 ¥y 3Cy3 Ca ~3C® Ske* 29y Eqy 2E51 Cy
Co =y 1Cyy -Cy -ic® Spe* — 2%y AE3; ~2Ey Ca

Sme —2%y Eyp —2Egp Cyy
R -24 A -R -R R Spkpx ~ 28y, -Ey 2By Cy

Sme* — 2%y —Ey —2E3 Css
v -30? 41 —Ty Soam — 2%y Ey —2Eg Cas
u -ad 20, Ty + Ty
w —3dl 03 -Ty k — -0 e?

m 0 0, et
B, oy -z %5Sy4) t 6! 05 et
B, —-228 z? (=8, £ 6 0, e?
B_ -7t -zt Sy,

more secure using those conventions. The present paper
should facilitate translating our results as well as our
equations into other languages.

We shall denote the basic 1-vectors by (k, m, t, t*) and
the corresponding 1-forms by (&, m,{,t*). Under a
change of signature k remains unchanged while m, ¢,
and t* change sign. On the other hand, k changes sign,
while m, ¢, and #* remain unchanged. Because the
metric tensor changes sign, any inner product of 1-vec-
tors or 1-forms undergoes an additional sign change.

The connection 1-forms,
v=dket, u=dkem+dtt¥, w=dmet¥

appropriate for signature +2 are transformed into the

connection 1-forms,
v=dke+t, u=dk*m+dit*+t, w=dt*em,

appropriate for signature — 2, and vice versa. Thus, if

491 J. Math. Phys., Vol. 19, No. 2, February 1978

you have an explicit expression for v, %, or w in terms
of coordinate differentials, you can adapt it without
change to the opposite signature.

The null tetrad components of v, #, and w we denote
by subscripts. v,=k+v, u,=k+u, w,=k+w do not change
sign under change of signature, but all other null tetrad
components of v, u, and w change sign. Similarly d,
=k +d remains unchanged, butd,=m-d, d,=¢+d, and
d,x=1*-d all change sign. We expressed all these re-
sults earlier in terms of the Newman—Penrose notation.

Under a change of signature the basis'? for 2-forms,

B,=kAt, By=kAm-+iAt*, B_=mAt*,

appropriate for £y =+1 is transformed into the negative
of the basis for 2-forms.

B,=kAt, By=kAm+t*¥At, B_=t*Am,

appropriate for €, ==~ 1, Thus, if you have an explicit
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expression for B,, By, or B_, in terms of coordinate
differentials, you can adapt it to the opposite signature
simply by changing its sign.

At IIT (where g, =¢;=¢5=-+1) we write the structural
equations, which constitute a more abstract form of the
eighteen Newman—Penrose equations, as follows:

dv —unv=C,B_+C,B,+ (C, +1sR)B,
+3S,,B* +3S,,B¥ +13S,,B¥,
du - 2w Av == 2[C,B_+(Cy=oR)B, +C_B,
+ 38, % B* + 38 ,,xB¥ — 55, ,B¥],
dw ~wAu=(Cy+HR)B.+C_By+C_B,

+3S,%%B¥ = 35 xB¥ +3S, B¥.

We have already stated that under a change of signature
v, u#, and w remain unchanged, while B,, By, and B._
change sign. In addition, R, Sy, Spx, C;, Cy, Cy, C.y,
and C_, change sign, while all other components of the
traceless part of the Ricci tensor remain unchanged. !

Knowing how all quantities transform under changes
of £1, &, and g3, one may easily deduce the form of the
structural equations for arbitrary €, €,, and £;. (See
Appendix B. ) In particular, we suggest how the struc-
tural equations should be written in order that they be
most compatible with the Newman~Penrose notation
(€, =g, =£3=-1), Since, to our knowledge, Newman
and Penrose have not introduced symbols for (v, 3u,w)
and (B,, 3B, B.) we have employed our symbols!? there,

We sincerely hope that the reader finds this guide to
changing languages informative and useful. We were
tempted to include a discussion of the more sophisti-
cated aspects of IIT formalism such as (p,g)-forms in
general, the (2,2)-forms R and ID in particular, and the
two Grassmann inner products [ and 71, but in the inter-
est of maintaining simplicity of presentation we success-
fully resisted the temptation.
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APPENDIX A: NEWMAN-PENROSE EQUATIONS
FOR ARBITRARY (c,, ¢,, ¢,)

The eighteen Newman—Penvose equations.

(1a) Dp - dx =~ &;(p? +00) + (e +€)p— k7 = k(3 +B+e4m)
— £1€2E3%y,

(1b) Do = 6 =—£4(p +p)0 + (3e = €)0 = (T +&4T+a + 3Bk
- ¥y,

(1c) DT=Ak=(=g;T+7)p + (= & T+ 7)o+ =€)7 = 3y + )k
= g ¥y — £16583P¢y,

(1d) Da —8e=(-€p +e— 26) — £,80 = Be = KA = K¥

+ (— £4€ +p)Tf - 818283@10,
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(le) DB-Ge=(~g,a+mo+(-gp-€)B— (L+ )
- (@ +eme = gV,
(1f) Dy~ lBe=(=~e;T+Ma+ (=& T+mB= [ +E)y~ (¥ +7)e
FTT = VK~ €ty = €983 A = £487€5P 4,
(1g) DA=Bdr=—¢g{pr +0u)—&;m + (@ - B)7 = VK = (Be =€)
= £18983%yy,
(1h) Dy =8r==¢(pp +0N) = gm7 = (e +€)u - (e — B)
— vk — g)y +2€583A,
(1i) Dv=dr=T=TI + (T = T)A + (¥ = V)7 = (3c +elv
- &gty — £18983%yy,
1j) AA=Bv== (L +AN = By =Y+ (Ba +B - g7 =TIV
- £y,
(1k) 6p - 30 =p(a@ +8) - 0Ba = B) + (p—p)7 = £1(1 — F)x
= 818981 +E283%,
(11) e -38B=(up-2r0)+aa +BB-2aB+¥(p=-p)
— gl = [1) = €193 = €189830 + E9E3®yy,
(Im) A=38u=(p-pv-g(u=-p)r+u(a+p)
+ (@ = 3B) = £1Ex85 + £985Dyy,
(In) sv=Ap =2 +XN) + @ +Vu +& 07 +(T=38=-a)
+ &89y,
(1o) dy-AB=(T—a =By +uT—0v+eer—Bly=7=p)
+ QA+ EyE5D s,
(1p) 8T—A0=(Uo+Ap)+ (T +B=a)T = (3y = ¥)0 + gkV
+ E283%02,
(1q) Ap=0T==(ph +ON) +(B=a =T)T +{v +¥)p - g vk
— E1E9dy +281E9E3A,
(r) Aa-ty=(p=eielv= (T+BM + (¥ =)o +(B=-Th
= E4&9¥3.
Commutation velations:
(2a) (AD=DA)p=[(y +7)D + (e +E)A (- g7+ T) T
- (=~ &7 +md]o,
(2b) (8D =Dd)d =[(a +8 +&,7)D +rA +&,05
- (- gp+e~€)b]o,
(2c) (6A-20)¢p=[ewD +(T-a~B)A+XE+(u -7 +7)8le,
(2d) (36— 68)¢ =[-£1(u - w)D +(p=p)a - (@~ p)3
- (B=-a)6ep.
Vacuum Bianchi identities:
(3a) Dipy + 408y == 3kdy + (2 = 4€(p)dy — (= 7~ 4€40)¢,
(3) Dy +£18Yy == 23 ~ 3€1pdhy = (= 27 = 2810 )y + & Xily,
(3c) Dijyg + &40 == Ky = (2 + 28, p)ey + 37U, + 28,10y,
(3d) Dy, +e,0%s == (de +£,p)P + (47 = 28,0 )5 + 31y,
(3e) APy~ 5Py ={dy— u)gy = (47 +28)¢; + 30,
(3) Ay, = Sy = vy + (2y — 21) by = 3Tty + 204,
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(3g) AP, — 5Py =20y — By + (= 27 + 28)Py + oYy,
(3h) Ay — 8P, = 3vihy — (2 +4u)d; + (= T +48)),.

APPENDIX B: STRUCTURAL EQUATIONS FOR
ARBITRARY (g, &,, £5)

Differentials of 1-forms:

(1a) dk=PA k+ew*nt+epnt*,

(1b) dm==PAm +wAl +w*At*,

(lc) di==—egwnrnk—vAm+iQ A,

P=(u+u*)/2, Q=u—u*)/2i.

Definitions of 2-forms:

(2) B,=RkAt, By=kAm+eidnt*, B_=gmAt*,
Differentials of 2-forms:

(3a) dB,=uAB,—vAB,,

(3b) dBy=2wAB, -2vAB._,

(3c) dB.=wABy,~uAB_,
2-form analog of 18-Newman—Penvose equations:

(42) dv—uAv=gy(CoB.+C By +CB,) —1yE,6,RB,

+3818984(SuB* + £, B¥ +5,,B¥),

(4b) du - 2w Av == 26,(C;B_+CB, +C_,B,) — $&,6,R B,

+3€1€085(€1Sp ¥ B¥* +8,,#Bf = S_,B¥),
(4c) dw —w Au=24(CoB.+C_1By+C_,B,) = the,e,RB_
+%818283(St*t*B’-k - Smt*Ba‘ +smm‘B;")'

Thus, for example, if one desires to write the struc-
tural equations in a form most compatible with the tra-
ditional Newman—Penrose equations (g, =g, =¢g3==1),
one should write the following:

(5a) dl=PAl=-vAm=-vAm,

(50) dn==PAn+wAm+wAm,

(5¢) dm=wAl-vAn+iQ Am,

8) B,=lAm, By=lAn+mAm, B_=mAn,
(72) v=kn+71l=0m-pm,

(To) 3u=en+vl-Bm=~am,

(Tc) w=m+vl=pm-rm,

493 J. Math. Phys,, Vol. 19, No. 2, February 1978

(8a) dv—-unv=tB.- By + @, = 2A)B,
+ &g B. ~ &1 By + &0,
(8b) z(du—wAv)= B~ (U + A)By + 3B,
— &(B.+&,;By— &,B.
(8c) dw ~w Au= (P~ 2A)B_ - 3B, + U, B,
+ &y B_— &y By + 3y, B..

Probably one should select NP-type names for the basic
2-forms (B,,3 By, B.) and the comection 1-forms

(v, 3u,w), but I shall leave that choice up to Newman and
Penrose,.

1All the languages with which we are concerned regard R g
as skew-symmetric in @ and 8 as well as in ¥ and 5,

1t is convenient to select I, in order to preserve the form of
D=1%3,.

SE. Newman and R. Penrose, J, Math, Phys. 3, 566 (1962);
4, 998 (1963). In determining (€4,£,,E3) we took note of
Sec. 1I and Egs. (2.7) and (2.8),

iL.P. Eisenhart, Riemannian Geometry (Princeton U, P.,
Princeton, N.J., 1926).

I. Hauser and R.J. Malhiot, J. Math. Phys, 15, 816 (1974);
16, 150, 1625 (1975). Our identifications of £4,€,,£5, and g,
may be based upon Sec. 1 of the last paper, Footnote 10 of
the second paper, and Eq. (39) of the first paper.
®R. Debever, Cah, Phys. 168—169, 303 (1964). In determining
€1,89,€3, and €4 we took note of Sec, 1,1, Eq. (5.6), and
Sec. 1.6, Debever’s notation is currently in a state of flux!
Compare, for example, Bull, Cl. Sci. Acad. Roy. Belg. 60,
998 (1974).

J.F, Plebanski, Spinors, Tetrads and Forms, a proto-book
representing lecture notes from a course on advanced rela-
tivity given at the Centro de Investigacion y de Estudios
Avanzados del IPN (México), 1974, In determining £;,8,,8&,
and g, we took note of Sec. 1.1 and Eqs, (V.2,21), (V.2.12),
(I1,1,11), and (I1.1.12), The reader should note that at an
earlier time Plebafiski employed signature — 2, but currently
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8R.P. Kerr, Phys. Rev, Lett, 11, 237 (1963).

% thank R. Isaacson for suggesting that I look into the rela-
tionship between the IIT language and the Newman—Penrose
language when he and I were colleagues at IIT,

10At IIT we generally suppress the symbol A between differen-
tial forms.

f1We would continue to use C,, ..., C_, for the corresponding
bivector components of the Weyl conform tensor if we were
to switch signature.

120ur symbols generally have subscripts associated with spin
weight, However, the symbols (v, u,w) are used in order to
avoid having two different types of subscripts on spin-
coefficients,
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Analytic continuation of an operator-valued H-function with
applications to neutron transport theory

C. T. Kelley

Purdue University, West Lafayette, Indiana
(Received 20 September 1976)

An operator-valued generalization of Chandrasekhar’s H -function satisfies a nonlinear integral equation.
A bifurcation analysis of this equation gives an analytic continuation of the H-function. This result is
applied to a criticality problem in neutron transport theory, and asymptotic results are obtained.

. INTRODUCTION

Operator values analogs of the Chandrasekhar H-
function! have been discussed by Mullikin® and Kelley. ?
The H operators in Ref, 3 satisfy a coupled system of
nonlinear equations:

Hl(“s g) 0
0 Hi(u, &)

:«) 19)+uz fo ‘ (DO(V) D»O(V))<H’(g’ Y e, ;)>

v (H,(u,é) 0 >
utv 0 Hy(u, b)) "

In (1.1), H and D are operator valued and Bochner-
intergrable on [0,1], the prime denotes Banach space
adjoint, and ¢ is a complex parameter, It was shown in
Ref, 3 that if

le] <3(f J," pwyav]ht,

the system (1.1) can be solved by an interative scheme,
In the scalar® and matrix®~7 cases, it has been shown,
under certain positivity assumptions on D, that the
point

c=2] [;' Ddv],,

is a branch point of order two for Eq. (1.1). In (1.3),

fl° i ¢, denotes spectral radius. In this paper as in Refs.
4 and 5, we normalize || [} D(v)dvll,, to be 3. The branch
point for (1.1) then is at {=1. This gives an analytic
continuation of H past the point {=1. In the scalar case
this result has been applied to probability by Mullikin, 4
and in the matrix case to criticality problems in neutron
transport theory by Victory, ® Mullikin and Victory, ®

and Bowden, Greenberg, and Zweifel. ?

1.1)

1.2)

(1.3)

In the present paper we show that, under certain
positivity and continuity assumptions on D(v), ¢=11is a
branch point of order two for (1.1), This result allows
one to continue the H-operators analytically to a cut
neighborhood of {=1. As an application we indicate how
the criticality results®® may be generalized.

In this paper, for 4 a Banach space, / (/) (resp.
Com(/A)) will denote the spaces of bounded (resp.
compact) linear maps on 4. B,((a,b), ) will denote the
space of Bochner p-integrable functions® on (a, b)
having values in /. A? will denote the space of two vec-
tors having components in 4. R (resp. @) will denote
the real (resp., complex) numbers. ¢ will denote the
Heaviside function,
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1L ABIFURCATION ANALYSIS OF EQ. (1.1)

Let E; <E{ be real, Let// be the Banach algebra of
integral operators on (" = ([E,, E,]) with continuous
kernels with the following norm: for Ac//, let k,(E,E’)
be the associated kernel, define

4]l =max|r,(E,E)]. (2.1)
N g, B
The multiplication on // is given by
E
kan(By EN)= [, ka(E, E"ep(E", B dE" 2.2)
For Ae¢ /N, define A’ by
k (E,E"Y=Fk,(E', E) (2.3)

We note that (AB) =B’A’,

Note also that A’ is not the operator adjoint of A; it
is that integral operator defined on  having as its
kernel the transpose kernel of A,

Let A/; be the algebra formed by adjoining the identity
to V. We define Iy =1y,.

Let Ny(N) be the algebra of 2x2 diagonal matrices of
the form

A= (A; AO;>; Ay A, eNo(W). (2.4)
We define
A} v=max(Jl 4., , [4.],), (2. 5)
A.E 0
AB:( 6 ! A,’.B;)’ (2. 6)
Iy O
]‘< 0 1/‘4“0)? (2- 7)
and
(2.8)

A 0
A¥ ="
(v &)
We note {4B)* =B*A*,

For Ac N, let k, be the 2-vector of continuous

functions

(kAl(E,E’)) .

kAr(Ely E)
¥ g=(%) andf= (;%) are 2-vectors of continuous func-
tions, we say g=>fif g;= f;, =1,2, We note that ele-
ments of N may be considered as operators on the
Banach space CZ of 2-vectors of continuous functions on
[E,, E,]. We write
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lAll, & & Al @.9)
Note that
”A“ v= (Ey- Eo) A (2.10)
The norm on (° is given by
1@ 2= max(lul_, ], ).

We consider the algebra X = B;(IR; N) with multi-
plication and norm given by

T+ Ste)= [ T - v)S(v)dy, (2.11)

U7, =/ l7e) | wae. (2.12)
In X we may define a Fourier transform by

7() = [ T(x) exp(inx) dx. (2.13)
We have

NS . -

T+ SO = TMN)S(M). (2.14)
We define a projector / by

PT(E) = T(x)6(x), (2.15)

and let P7 and 7 be defined in / (2X) and / (X) by
®7)SK)=p [,” Tl - y)S(y)dy,

TS0 = [2T( = 3)S(y) . (2.16)
We have ’
(BT = BT, o= (7o < S o I TG [ pax.
(2.17)

If [P7ls <1, as an operator on X, then for each ¢,
¢l <1, we can find a unique I'e X so that

T, 0)~ ¢ [, Te- Ty, 0dy=tTk), ¥>0. (2.18)
We define
A0, 0 =1+T*(, ).

Then /' is an analytic, Ny-valued function of A for
Imx >0, and continuous for Imx= 0.

(2.19)

We have, as in Ref, 3,
Theovem 2,1: Let T< X. Assume that
A IPT U, <1,
(il) T*(-x)=T),
Then for A€ R, [{| <1, we have
[1- eTOOWH* 0, O (=2, O =L (2.20)

Now let C €/ be such that % is strictly positive. Let
o €( be bounded from below by 1, For ¢ & we define
a multiplication operator Z = / () by

Zo(E)=0(E)P(E). (. 21)
We assume that
[ =2 2. 22)

Note that (2, 22) implies that [|[P7]l,,=1 as an opera-
tor on PX. We define an operator-valued function D(v)
by

DD (E) = [ ko(E, B0 (BN = o (E)dE'  (2.23)

and an //-valued function K by
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K(x):{fol exp(- |x|/v)Dw)dv/v), x#0, (2. 24)
0, x =0,
We set
K(x) 0
T(x):< 0 Kl(x)> .

AsinRef. 3, TeX, T*x)=T()=T(-x), and | BTl
=1.

Let H(u, £) and D(u) be given by

H(u, £y =#6/ 1, ©) (2. 25)

D(“):<D<§u) D'Om))’ 0=p=1.

As in Ref, 3, we obtain

Theorem 2,2: H{u, £) is a continuous Ny-valued func-
tion of u for 0 < u <1; it is a meromorphic Ny-~valued
function of u for pe C/[- 1,0], and analytic for Reu
>0, Moreover,

dv
utv

1

H(p, Q) =1+ng f Dv)H*(v, {) H(p, &), (2.26)
0

As H commutes with itself and the identity, we may

also write Eq. (2. 26) as

dv
+

PR (2.26")

1
H(u, o) =1+ptH(u, ) f D@)H*(v, §)
0
Theorem 2, 2 implies that 2y, r.;(E, E’) is a continuous
R%-valued function of (i, E,E’) for 0 <l¢ <1, As in Ref.
7, if 0sz<n <1, we have

O0<kycy,e-r(E,E") <k, n.r(E,E). (2.27)
We require
Theorem 2.3: The limit
(2. 28)

Limé(u, ) = H(3)
exists in N, uniformly in u, and therefore

Ry (E,ENe(([0,1]x[Ey, E{]X[E,, Ei])z-

Proof: As in Ref, 7 the assumptions on C and ¥ imply
that there is u=(jr) > 0, so that «, and «, are in( and

[1- T(O)u=0, (2. 29)

(e, 1) = j‘EEO Yo, (E)uy (E)dE =1, 2. 30)
From Eq. (2,26) we have

H* (1, 01~ ¢ [, H(v, OD(v) av]

=I- g8 (u, 0) [, [v/(u+ V), 9D dv,  (2.31)
By theorem 2.1 we have

I~ ¢ [ ' Hp, ODE)dv=H(=, (- £ 7(0). (2.32)

We apply both sides of (2, 31) to u and use (2. 32) to get
(1~ H* (i, DH(>, u

1
:[I— gH*(u,g)L uivH(V’ ODW)dv u]. (2.33)

Now as ky(,,0)./(E, E') = () and H(u, Hu>u, we have
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(1 - C)H*(uy g)u

1
< [1_ EH* (L, ©) f . = ~ H(y, g)l)(u)du]u°
0

Hence

1
H*(u,g)[(l— §)1+§f Z:L H(v, §)D(u)dv]u€ u. (2.34)
p BTV
Now the vector function f, given by

14

1
f(“" gy EyE’): [(1" oI+ ’fo L—EII(V, g)D(V)dV]u,

is bounded away from zero in the sense that

inf f(u,¢,E,E'Y=A>0,
g=e<1
0=y =1

Ey<E, B'<By

Hence
By ,
on Ry*(u, 0y (B, ENdE" < (1/A) max([[u; [ » Hurﬂ =)l
(2. 35)

Therefore,

}iTiI}kH*w.:)-l(E, E'):kmm-t(E,E')

exists in (L,({0, 1}x[Eq, E,]X{E,, E{]))’. Moreover, by
Eq. (2.35), H(u)e B([0,1];/ 1(L1([E0,E1))), and H*(u)
e By({0,1];/ (L.({E,, E,]))). We may therefore take
limits in Eq, (2.26') to get

dv
ptv®

1
H(p)=I+pH(p) [, DEE* V) (2. 36)
Now for each pe(0,1], H(n)~ < Com(L,) and H(p)™?
=1-y [YDW)H*@)dv/ (1L +v) is a right inverse of H(i).
Hence H{j1)™! must also be a left inverse, Therefore,
we may rewrite Eq, (2, 36) as
1
H(py=I+p f DWH* () -2— H(p), (2.36")
0 wtv
(2. 36") implies that ky4(,,.1(E, E’) is continuous in E for
each fixed E’, Hence ky*(,,.;(E,E’) is continuous in E’,
Equation (2, 36) and the dominated convergence theorem
imply that kg4(,,.(E,E") is continuous on [E, E{]X[Ey, E]
for each fixed p.

Now H(u)! is an analytic, / ((®)-valued function of u
for pe C/[~1,0], and continuous on [0,1]. Hence H{u)
and H* (1) are meromorphic / (C?)-valued functions,
continuous on [0,1] since H(u) - I is compact, Hence
Eyiuy-1(E, E*) is an analytic C*-valued function for u
near (0,1], Rep >0, Especially, ky(,,.; is a continuous
(?*-valued function on (0,1]. But lim,.gs+ky(,y.;=0, by
Eq. (2.36), and hence &yq,,.; is continuous on [0, 1]
x[E,, E{]x[E,, E{|. Dini’s Theorem will therefore im-
ply Eq. (2.28).

Now set e=1~ ¢ and G(u,e)=[H(u)- H(u, O)1H W)™
G is a continuous, N-valued function of u for 0= <1,
We have, as in the scalar! and matrix® cases,

Lemma 2,1: For 0<¢ =<1, G satisfies

1
G0 wtle) [ DO )6 v, 02
0
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=7 - Gl,0lHw) -1

dv
+v

m . (2,37)

b
- UG (1, e)H () f DWHE)G* (v, ¢)
]

The Frechet derivative of the map given by Eq, (2,37)
ate=0, G=01is I~/ , where, for Ke(([0,1]; M),

dv
+ v

o (2.38)

1
LK ()= pH() f D(W)H* (E* ()
0

As in Ref, 7 we consider the alternate operator,
M given by

! 14
/MK(M)=H(M)f L—:;D(V)H*(V)K*(V)dvo (2.38")
0

We note that (/-/M)K =0 iff F(p)= uK{n) satisfies
({-/)F=0,

Now the assumptions on £ and C together with Eq,
(2.32) imply that there is () =w €(? so that

(- fol DW)H* (v, £) dv)w=0. (2. 39)
for = (I e set
— (fnw Yo, _ P, 0
Bf= ((f;,wl,)w) - (0' P,)f- (2. 40)

We have P¥*=P and (I-/M)P=0.
If K is such that {-/)K=0, then (/DK =0, i e.,
K(n)y=M*K(n)

i
= H(u) fo MZVD(v)H*(v)

o
Q+V

1
x f K (0)H(@)D(@) 2 daH*(v) dv, (2. 41)
i}

Hence the associated kernels, kx, and kK'r’ satisfy
equations of the form

kK, :/mkx,, kKr:/”rkKr-

It is easy to see that the operators /|, and /}j; are
compact on C (0, 1]X[Ey, E4]X[Eq, E4]) and strictly posi-
tive in the sense of Karlin, !’ Hence, if there is a solu-
tion to Eq. (2.42), it is unique up to a scalar multiple,
We then must have

K(u)=P, (2.41%)

Hence (/- /)F=0 has, up to a scalar multiple, the uni-
que solution

F(p)=pP,

Also there is a< (C*[[0,1]X[E,, E{]*])’ so that if
EcC?(0,11%[Ey, E{]?) is nonnegative and not identifical-
ly zero, A{k)> 0 and for every Fe( (0,1} M)

Alk(r.ryp)=0. (2. 43)

For Fe( ({0,1}; N) we set A{(F)=Alkg); Eq. (2.37) then
becomes

Glu, e, 0)=0apP+Q(N(, G),

We describe A in more detail in the Appendix.

(2.42)

(2.42%)

(2.44)

Here, o is a complex parameter, A (e, G) is the right
side of Eq. (2.37), and € is a pseudo-inverse of (I~/).

C.T. Kelley 496



For |Gl (w13, lel, and la| small, Eq. (2.44) has
a unique solution, if ¢ is considered as a variable, We
put this solution into the condition

E,a)=A(NE,Glu,e, @) =0 (2. 45)
and differentiate with respect to o and ¢ to get
0
E(0,0)=0, 'é;E(0,0):O,
oE H > (2,46

2% 0,0)=- A(12P) <0,

As N, G) is analytic in¢ near e <0, Ef, ) is analytic
ine¢ and o for small lel and | ], Hence e is a two-
valued function of ¢, neare=0, S0 G=0, e=0is a
branch point of order 2 of Eq. (3.37). We may then
write

G(kye) =€ 3Gy (n)+eGalp) + OE*7?), (2.47)
Where ¢!/? is the positive square root.
We substitute Eq, (2,47) into Eq, (2,38) to get

G =apP, AP =AHW) -D. (2.48)

We have

Theorem 2,4: If D(v) is as in Eq. (2, 23), the point
£=1 is a branch point of order two for the nonlinear
system (1,1),

The reader should note that we have normalized
1P 71, to be one, Had we not done this, the branch
point would have occurred at the point £=||P7 |l It
should also be pointed out that we have shown that
H(u, ¢) is in the space Ny for ¢ near 1, arg(l ~ &) #7,
Therefore, H,(p, £)~ I, H, (1, ) - I are integral opera-
tors with continuous kernels for such £. It should also
be pointed out that the assumption %_> 0 may be weak-
ened, One need only assume that there is a positive
integer p so that ke >0 on [Ey, E4]X[E,, E4].

(li. CRITICALITY IN NEUTRON TRANSPORT

Let K be given by Eq, (2.24), For 0 <7 <= consider
the operator K, € Com(C ([0, 7],()) given by

Ked &)= [ Klc = p)o(v)dy, Osx<r, (3.1)

It is clear that (I~ £K,)™! exists for |¢l <1, For [¢|
<1, define I'(x; &, 7) by
Py, ¢, 7 - £ [ Tl =T (p; 2, ) dy
=¢Tl), 0<x<T, (3.2)
As in Refs, 5 and 6, we have

Theovem 3,1: (I- g/(f)-i(p &)=¢p @)+ [TRM,y;L,7)
X$(y)dy, for 0<x <7, where

reis =R T, 0250
+ [P0y — 73 £, T (y = 73 8, 7)
~DT=x+r; g, D (1=y +7; ¢, N]dr, (38.3)
We note that formula (3. 3) holds if K ¢ B{(R; Com(4))
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and ¢ is S-valued for any Banach space /4 if
J K@ yde s 1,

Now we let T be the extension of T to all of R by the
defining equation (3.2). We define I'* and I with sup-
port in (0, «) by

Fl-x)+ Tx)+ TP - 7)

= gK(x) + KTy 00) =T (), (3.4)
For Imz > 0, we set
Pl ¢, M =H,, OlI- T'e; £, D), (3.5)
Qe; £, N =Hlz, DT (z; ¢, 7). (3. 6)
As in Refs. 5 and 6, we have
Tc;8,7) = 51; f_@ (R (2)[1- LK ()]
XHil e, OF(,z, £, 7)dz, 8.7

where F(v,z,¢, T)=Plz; ¢, 7) explixz) - Q(z; ¢, T)
xexp(i(T-x)z]. The convergence of the integral in Eq,
(3.7) is in the sense of IBy(R, A/).

We make the fqllowing assumption on the distribution
of zeros of [I- £K(z)).

() There is 8> 0 such that, for !Imz| <8 and ¢ suf-
ficiently close to 1, [/— ¢K(z)]™! exists for every z
#+ 2y, where |Imz,| <8,

We note that assumption (I) implies that [/ - K(z)]"!
exists for every 2#0, I1Imz| <8, since zy=0if £=1,

As in Refs, 5 and 6, we have

Theorem 3.2: For e=1- ¢ small, zy=2,() is an
analytic function of ¢!/* for |arge! <#. For e real, z; is
pure imaginary and

zpe) = cie! 2+ 0¢). 3.8
In (3.8) ¢ is given by
e =[2/ K" Oy u)]'?, 3.9)

where the double prime denotes second derivative and
u, and u, are given by (2, 29).

Moreover, eigenvectors u,() and u;() may be chosen
s0 that [I- tT@0)) G =0, (,y1;)=1, and

wa=(i5)-(c): 0.

At this point we note that Theorem 2, 4 implies that
there are two solutions to (1,1). Only one of these,
namely H(p, )=I+T*E/u, ), is of physical importance,
The other, which we denote by H'Y, is given by

(3.10)

HO(u, 0= [I+ Z—z_% se]H(u, ). (3.11)
S, is a projector in / (C?) given by
fr ___L__ (f,.,U,.)'U;
Se fl)_ (l’,,’l),. <(fl’vt)vr)’ (3.12)
where
v(e):(z:g)zil* (2o, L‘)-iu(e)., (3.13)
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Note that the physical solution H is analytic for 1£|
<1 andforreal &, O0<¢<1, H,-I, and H,- [ are in-
tegral operators with positive kernels, H(” has neither
of these properties, Also the iterative scheme dis-
cussed in Ref, 3 will yield the physical solution, It has
recently been shown!! that the iterative scheme con-
verges to H(p, £) for [l <1 in the multigroup case; the
proof in Ref, 11 generalizes directly to the case of con-
tinuous energy dependence discussed here,

We chose ¢ sufficiently close to 1 so that |Imzgl
<B/2. We move contours in Eq. (3,7) and obtain

Ly, £, ) =iR(OK @) H3' @0, O)Flr, 29, £, 7)
+(1/2mi) [ R @)l - tRE))

X MMz, OFx,z,¢, T)dz. (3.14)
In Eq. (3.14) we have, as in Ref. 8§,
R()= 1325[1 £K(2)]
0 -1
= TR0, me) .13
where, forxe(,
Qox = (¥, 1, ()1t (€) (3.16)
We define, for A/-valued G(z),
T,(6)&) = (= 1/2m) [ % 4, o)1= K]
X A, OGO/ (L + 2)] explitt)dt, (3.17)

the integral in (3. 17) being understood as a Cauchy
principle value with respect to the infinite limits,

It G(z) is analytic in {z|Imz > 8/2} and G ()ll v is
bounded there, we have, for n=0, T7(G)=SHG), where

S.6)&) = (= 1/2m) | T A5 DER O~ tROF
X A5, O[GW®/ (L + 2)] expli T8) dE. (3.18)
Moreover, there is C> 0 so that
sup [[SHG)&) | i, = C exp(=n78/2)

Imz=8
x(sup [ F(a) ).
Imz=z8/2

Hence, for 7 sufficiently large, we may define func-
tion Py and P,

Pyle)= 3 102,
n=0 (3.19)

P =% 111 ),

where the convergence is uniform in {z1Imz = 6/2}. Now
Py and P, are analytic and bounded in {z|Imz = 8/2}.
We define ¢ by

Qo = TTP()-

If A(z)=exp(iTzo)Py(2) /7120, RO H;
as in Ref. 5,

P(z) :Po(z) —A(Z)Q(Zo),
Q) =Q(g) — A(2)Plzy).

The proof of this is a direct generalization of that found
in Ref, 5. An important role in that proof is played by

(3.20)

(zq, £), we have,

{3.21)
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the following lemma, which we state for completeness

Lemma 3,1: For ImAx >0,

Hx c):1+—§_ fgrL’(Z §)T(Z)dz
o omi

= (3.22)

é: T T Mz, 0) dz.

?
zt+ X ®.22)

A =1+ 5
The lemma follows from the Parseval relation as in
Ref. 5.
Welet ¢ — ¢ >1, argl-¢)—
plies that for "= 1 small,
AU €)= }igg A7t ©)

arg{{={}~-r

- 7. Theorem 2.4 im-

is a well-defined, A/y-valued function for Imz = 0. The-
orem 3., 2 implies that
z(1-¢)

+

z'= lim
arg(I‘:E your
exists, For 7 sufficiently large, P;, P, and @, have
limits at ¢*. We apply the bounded convergence the-
orem to Eq. (3.14) and obtain

Lyl £, ) =iR(EEK @VH @, £V F e, 2%, 6, 1)
+ (1/2ni)f_::§jz CR @) - ¢'Kz)]
XHile; e Flx, 2, LY, T) dz. (8.23)

If (/- ¢*K,)$ =0 has a solution ¢ {x, E) which is posi-
tive for 0<x < 1, E < E < E,, one can show, as in Ref,
5, that ¢ must be even about 7/2. Recently Victory!'?
has shown that, for £*>1 and sufficiently close to 1,
there is 7 < so that (/- £’ )¢ =0 has a positive solu-
tion, and {"—1 as 7> =,

We apply (3.23) in a way similar to that of Ref. 5 to
get the following asymptotic result:

Theovem 3,3: ¥ (I~ 'K, )¢ =0 has a positive solution
¢, then there is ¢ > 0 so that for 7 large and |x — 7/2|
<1/4,

¢ () =ccos[z*(7/2 - )], () + Olexp(- 78/4)]  (3.24)
as T, Tand {* are related asymptotically, as
& —1, by

r=n/2"= 20, +0(|1-¢*|), (3. 25)
where

aozfoi a(pypddy/ [, ey du (3.26)
and

o (1) =(,(0), [\' vDO)H, (v) dvH, (1D (1), O). (3.27)
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APPENDIX

In this appendix we give an explicit formula for the
functional A which is given uniquely up to a scalar
multiple by
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A(U-[)F)=0, all FEC([O,].],}V). (A1)

Our formula is a direct generalization of that given in
Appendix B of Ref. 7.

For A, Bc N define
A, B) = [ 21 [, U ka (B, BN, (B, B)
+ky (E,E"p (E,E")dEdE',
Note that for A,B,C< N, we have
(A, B) =(A*,B*), (AC,B)={(A,CB)=(A, BC),
For G,K < B.({0,1], N) define
1= K@), Gu) du. (A3)
Now let v, and y, be positive functions on [Eg, E(]
satisfying
(- [ BE)D* () dv)(y”) —o0.
0 Vi
For f= (;;) e(? define

wr= (o)

We have A*=A and
All- [ D@)E* () av]=0.
Now define G ¢ B, ([0, 1], N} by
G(u)=H(u)D*(u)AH (1), (AT)
Then for each Fe(({0,1],N)
[LF Gl= [(LF)* G*]

(A2)

(Ad)

(A5)

(A6)

(VH@)D* (V) dvH* (v), G*(v))dv
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“V H*(n)G*(p)dy ) dv

=j: F(v), Hv)D*(v) f:

= f1<F(u), Gwydv=I[F, G|
0

Hence [(/ -/ )F,G]=0 for all Fe(({0,1],N). We have

for Ke(C (0,1}, N)
AE)=[K,G]. (A8)
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Solution by iteration of H-equations in multigroup neutron

transport
C. T. Kelley and T. W. Mullikin
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The Chandrasekhar H-equations for matrix-valued functions are solved by an iterative method. Complex
variables and positivity techniques are used to obtain convergence. This approach may be applied to

subcritical neutron transport in a slab with isotropic scattering.

I. INTRODUCTION

Certain problems in the theory of radiative transfer
were made computationally tractable by Chandrasekhar!
in the forties. He introduces X and Y functions as solu-
tions to nonlinear integral equations arising in an
analysis of radiative transfer in plane-parallel
atmospheres of finite thickness. For half-space
problems these equations reduce to a single equation for
the scalar H-function satisfying the nonlinear equation

YH)Y(v)

Ty dv. (1.1)

H(p)=1+ uH(u)f

o]

In (1.1) ¢ is nonnegative and

Joawyav= &, (1.2)
In recent years, matrix-valued and operator-valued
H-functions have been used in the study of multigroup®=®

and continuous energy®” neutron transport, and in
scattering models in radiative transfer.®'° Operator
equations analogus to Eq. (1.1) are derived, and
methods for their solution become of interest.

It is known that, in certain cases, the nonlinear H-
equations do not have a unique solution, there being one
solution of physical significance and perhaps other
extraneous solutions, Iterative methods of solution must
be investigated both with respect to convergence and
to convergence to the desired physical solution,

Numerical methods for solving scalar H-equations
have been investigated for some time. °~** Recently
Bowden, Menikoff, and Zweifel'*''® have used contrac-
tion mapping arguments for the scalar and matrix
H-equations to show convergence of iteration sequences
with respect to certain norms.

In this note we show convergence of an iterative
sequence to the desired solution under conditions less

restrictive than those of Bowden, Menikoff, and Zweifel.

We use concepts of positivity and analyticity rather than
that of contraction mapping.

We give proofs for the models of N-group neutron
transport in a subcritical half-space with isotropic
scattering and fission. These models are considered
for simplicity, the proofs extend to more general
models with attention to mathematical technicalities.

I1. SUBCRITICAL N-GROUP TRANSPORT

We consider the integral operator with N XN matrix
kernel
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k(x—y):wa exp(—/Z)g—l[- (2.1)
1

x=3l

In Eq. (2.1) C is a nonnegative matrix and T is diagonal
with 1=0,,> 0,,> °°*> 0, .. This is related to the
transport equation in a half—space (x> 0),

3y of

w—t +Z¢:E Ple, u)du’.
-1

F™ (2.2)

It was shown by Burniston, Mullikin, and Siewert'®
that a sufficient condition for the half—space to be
subcritical is that the spectral radius of Z'C satisfy
HZJ'IQIW< 1. This is also known to be a necessary
condition, '’

Assuming that [|Z7'C[[,, < 1 for given matrices = and
C, we introduce a one-parameter family of kernels

/e(_v,y,w):wC[ eXp(—I‘E)(I—[- (2.3)
i

eyl 2¢

In Eq. (2.3), w is a complex parameter restricted by
lwlIz7Cll, < 1. For real w, 0<w<[|Z7'Cl;}, the
kernels are associated with a physically reasonable
transport problem. We have imbedded the transport
equation (2. 3) in a one parameter family with w=1
giving the original equation.

As in Ref, 2, for real w, 0s w< HE'ICH”", the H-
functions of physical interest are defined, for 0= u<1,.
by

Hl(u,w):Jr(O*, u,w), Hr(u,w):J, 0, p,w) (2.4)

The J-functions are solutions, with / the N XN identity
matrix, to

J(x, 1, w) = exp(— x/ud + w]:k(x =W, (v, i, w)dy,
Jy (e, 1, w)=exp(-x/ )+ wj:J, (v, i, wk(x —y)dy.
(2.5)
Solutions are unique® in C, the space of N XN matrices

of bounded continuous functions on {0,=). The norm in
C is given by

([M|l= Max {sup {mij(x)l}‘.
1<i, j=<N

j =< 0= xge

We make use of the tools of positivity and analyticity.

Lemma 2.1: H, and H, are, for 0< p <1, defined for
complex w as analytic functions in the disc
lwl<||Z7'CHI;L. For real w, 0<w<|IZ7'ClI7, these are
nonnegative N XN matrix-valued functions of u,
0= <1, where H (0,w)=H,(0,w)=1.
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Pyroof: The Neumann series for J, and J; converge
in C to represent J,and J; as convergent power series

in w with values in C. Hence the H-functions are analytic

in w. For real w, the Neumann series has matrix
coefficients with nonnegative entries.

It follows from Theorem 2 of Ref. 2 that H, and H,
also satisfy the coupled system of nonlinear integral
equations,

Lw 1 CD(v)
H W) =I+"=H (1 w)j- H (v, w) dv
T(U" 2 ‘r( ) o 1 b u+y b (2‘6)
Lw [ CD(w)
H,(u,w):1+—2—j; _J:—;H,(V,w)duH,(u,w).

In Eq. (2. 6), D is a diagonal matrix of characteristic
functions, d,, =x[0,1/0;,]. For convenience of notation,
as in Ref. 4, we define, with ~ denoting transpose.

H, 0 H 0 CD 0
H= ), B*= RERE _ 2.7
0 H 0 B, 0 DC
Then the system (2, 6) becomes
1
H(u,w):1+-ﬁ}2211(u,w)[ P()H* (v, w) dv (2.8)
o ut

or, more briefly, with L a linear integral operator,
H=I+wHL(H*). 2.9

For matrices 4 and B, we write A > B if the matrix
A — B has nonnegative entries.,

Theorem 2.1: The physical solution to Eq. (2.9) for
0<ws || ="CI|7} is the limit of the sequence {H,} given
by

Hy=1I, H_,=I+wH L(H}). (2.10)

In particular this is true for w=1if || E"CHWS 1. The
sequence converges uniformly in 4 and w for 0< ps1,
lwl=IZ*C 5.

Proof: For [w|<||Z7*C|I} a solution to Eq. (2.9) is
given by Eq. (2.4). It is known® that this physical
solution H(j,w) has a limit H(u,[|Z7'Cli]]) as w in
increases to [|Z71C ||;;. This limit satisfies (2.9) and,
if |H! denotes the matrix (|%;,1), it follows from Egs.
(2.4) and (2. 5) that, for |wI<||Z7C||;}

|H(i, @)= B, | @)= B, IZ7C )

For real w, 0<w<||Z7'C||;;, the physical solution

Hto Eq. (2.9) satisfies H= I=H,. Hence
Hy< Hy=I+wHL(H*)< I+ wHL(H*)=H,
If follows by induction that
H(u,w)<s H , (1, 0)< Hp,w)< Hu, IZ7CH7).

It was shown in Ref. 2 that the entries of H are
continuous functions of u, 0< © <1, The matrices H,_
are monotone increasing in # for 0< w < HE"C[];; and
bounded. We denote the limit, pointwise in ¢, by

K(p,w)=limH (1 w).
bt
We obtain L, convergence in i of {H } to K. As K

satisfies Eq. (2.9), K is continuous for 0< pu <1,
Dini’s theorem gives uniform convergence of {H } to K.
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For complex w and n>m, H (k,w)-H,(4,w)is a
polynomial in w with nonnegative matrix coefficients.
Hence

|H (1, 0) ~H,(1,w)]
SHn(“7 'w()_Hm(“’ ‘w{)

SH,,(M,HE”CH;;)—Hm(,u,HE“Cl!;;). 2.11)

The right-hand side of the inequality (2. 11) converges
to zero as n,m approach infinity, Hence K(u,w) is
analytic in w for lw|<[|Z7'CJ|;; and continuous in w for
lwl< 27l

We obtain agreement of K(u,w) with H{i,w) by show-
ing that these analytic matrices agree on an interval

for real w, For 0 ws a< HZ'ICH;;, we have

H=I+wHL(H*), K=I+wKL(K*), K<H.
Hence,
H-K=wHL(H* = K*)+ w(H - K)L(K*)

< wHL (H* - K*)+ w(H -~ K)L (H*).
This implies that

(H-KXI - wH(H*))H < wHL(H* - K*)H,
Hence, by Eq. (2.9)
H(w) ~ K(w) € wH(a)L(H*{w) ~ K*{w))H(a).

For 0< w <8< o and B sufficiently small and positive,
we get H(w)=K(w). This completes the proof.

The condition of the above theorem that ||£7!C ly, =1
is less restrictive that those of Refs. 6, 14, and 15.
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The formalism introduced in Paper I [J. Math. Phys. 18, 952 (1977)] is made manifestly covariant by
including as an admissible phase space any 2n-dimensional submanifold of the forward tube
7=1{x—iyeC™ " y,>ly} which is of the “product” form o = §—i(QQ,, where 1, =[yER""]
o=@ +y?H"?}, >0, and § is any space- or-lightlike submanifold of space-time R"*!. The o’s have

natural symplectic structures covariant with respect to the Poincaré group, and a norm |; -

-+ on the

space K of solutions is defined by integrating with respect to the Liouville measure on o. This
automatically gives | | f]; 2 as the total flux of a conserved space-time vector field, implying that [1 fii, is
independent of o. Some inconsistencies encountered in the space-time theory of Klein-Gordon particles

appear to be resolved in the phase-space framework.

1. INTRODUCTION

In a previous paper,! hereafter refered to as I, a
phase-space formulation of relativistic quantum me-
chanics was initiated, A “coherent-state” representa-
tion of the Poincaré group /2, for massive scalar parti-
cles was constructed on the space K of positive-energy
solutions of the Klein—Gordon equation in (z +1)-dimen-
sional space—time. The elements of K extend as holo-
morphic functions to the forward tube* T

Ae)=(@n)™"2 [ exp(- izp)] (p) dUp),

where

1.1)

z=(g,z) € [ = —ive C™ |y, > |y|p=R™ - iv,,
2={pe R™ |py=(m’c*+p)!* =0}, m>0,
AQUp)=dpy«--dp,/w, zp=2.py—2Z-p,

and F(p)=w[f(x,0)] (p) where ~ denotes the Euclidean
Fourier transform in R", It was shown that the
functions

e,(p) = @r) " explizp)

[defined so that f(z):(ezif>L2(Q); z is the complex con-
jugate of z ¢ 7| belong to L?($2) and represent optimal
wavepackets (in the sense of Theorem 4 of I) centered in
space—time about x (that is, focused at x at time® x,)
and traveling with expected energy— momentum propor-
tional to v, Hence the submanifold

(1.2)

Py={x-iy e T |xg=0,y"=»%, >0, (1.3)

can be interpreted as a classical “initial phase space”
for the particle. The space of restrictions of fe X to
P, is denoted by X,. It was shown that the expression

L7 13= 5, | @) [* @), (1.4)
duy)=Cydxy e o de,dyy - dy, (1.5)

(where C, is a certain constant) defines a norm on K
and K, which satisfies || f|l, =l fll ;2 @, (Theorem 2 of I),
This implies that £ and K, are Hilbert spaces

under the corresponding inner product {-| <), and tnat
the map fH_f is unitary from L%(?) onto X and X,. We
have a continuous resolution of the identity* in terms of
the ¢,, z ¢ P,

Jo, leaes] din@)=1 1. 6)
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Now L%(Q) carries an irreducible unitary representation
U of P, (characterized by mass m and spin zero) under
which the e, are covariant,

Use,=Cpy g€P, 2€7. 1.m
Hence the corresponding representation on K (also
denoted by U) is given by

(U N &) =F(g72). (1.8)

The set P, is not invariant under the action of /91 on
/, hence the above formalism is not manifestly co-
variant, In this paper we construct a natural class §; of
“phase spaces” 0 C7 and associated measures L, to
which the main results of I extend, ¢ includes P, (the
corresponding measure being u,) and is invariant under
P, hence the formalism is freed from its dependence
on P, and becomes manifestly covariant,

We begin in Sec, 2 by regarding 7 as an extended
phase space, ® on which /2! acts by canonical transforma-
tions, Candidates for phase space are 2rn-dimensional
symplectic submanifolds®” o< 7, and ), transforms
different 0’s into one another by canonical transforma-
tions, A 2n-submanifold of the “product” form S-i%,,
where S is an n-submanifold of space—time and &, is a
“mass hyperboloid,” turns out to be symplectic (with
respect to the induced structure) if and only if S is
space-or-lighilike. Such o’s form a family §; which is
invariant under /.,

In Sec. 3 we extend the results of I to arbitrary
oe §. Each 0 carries a canonically associated
(Liouville) measure j,. We show that for each fe K,
Hfll(z,E Hin,Z(uo) is the total flux of a conserved vector
field, hence independent of 0,

In Sec, 4 we show how the phase-space formalism can
be used to resolve certain inconsistencies in the usual
theory of Klein—Gordon particles,

2. SYMPLECTIC STRUCTURE

The Poincaré group acts on X by simply transforming
the underlying space 7 : (U, f)(z) =f(g'z), where g
=(a,A)< P, and gz =Az +a, We wish to supply / with
a symplectic structure®? such that the map z—~gz is a
canonical transformation for each g ¢ 2., That is, we
need a 2-form « on 7 which is (a) closed (da=0),
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(b) nondegenerate [the (z +1)-fold exterior product

@™! is never zero], and (c) invariant under /%,, The last
condition means that g*a = o, where g* is the pullback
map on forms induced by g (a brief description of which
is given in the Appendix). Since every Poincaré-
invariant function ¢(z) on 7 depends on z only through
yz, the most general invariant 2-form is given by

a=@(y)dy,dc* +P(y*)y v, dy* dx*,

(We are suppressing the wedge notation; thus, e.g.,
dy* dx¥ = — dx¥ dy®. ) Now the action of 2}, on 7 is not
transitive, and 7/ decomposes into a union of orbits
[Eq. (3.8) inI]
/=u P){:
A0 (2. 2)
Pl={z=x-iyc T |y =2%=2)/Som).

As shown in I, each Pj gives rise to an equivalent
representation of 2, Our main results in this paper
(Sec. 3) will be confined to P} for a fixed A, Since the
second term in (2, 1) contains d(y%) =2y,dy* as a factor,
its restriction to P} vanishes. Hence we will confine
our attention to

a=dy,dx*

2.1)

(2.3)

without essential loss of generality, This form is sym-
plectic as well as invariant, thus each g< 2} acts on
by canonical transformations,

7 is an extended phase space, containing the time x°
and the “energy” y, as a pair of free canonical varia-
bles. A 2n-submanifold o of 7 will be a candidate for
phase space only if the pullback o, of ¢ to ¢ is a sym-
plectic form, Let o be given by

o=1{ze 7 |sz)=h(z)=0}, 2.4)

where s and & are two real-valued, C” functions on 7
such that dsAdh#0 on 0. For example, 0 =2, can be
obtained from s(z) =x; and %(z) = V3% - A, The pullback
a, does not depend on s and %,

Proposition 1: The form a, is symplectic if and only
if the Poisson bracket

ds ok 0s oh
hi= -—
s, 2t ox® 9y, Oy, ox*

#0 (2. 5)

everywhere on 0,

Proof: a, is closed since a is closed. Hence a, is
symplectic iff it is nondegenerate, i.e., if and only if
the nth exterior power ag of a, vanishes nowhere on o,
Now a4 equals the pullback of a" to 0, and

a"=nldy,di*, (2. 6)
where
dj;u: (_)udy()' ¢ 'dyu-ldyu«’l“ 'dyn,
2.7

de* = (=)*dx™e + o dx*dxt. .o dx”,

Let {uy,... , %20, U1, Vaf be a basis for the tangent space
/:0f [ atze o, withuy,,..,u,, a basis for the sub-
space 0,, Then since ds and dk vanish on the u,,

(@™A dsndh)uy,. .. s Uzny V1, Vg)
- CY"(ui, o e ,u2,,)(dS A dh)(vly ’l)z)

=05y, .., ty,)(dSAdRY (1, 0,).
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By assumption dsAdh#0 at z, hence (dsAdh)(vy,vy)#0.
Thus ¢, is nondegenerate at z if and only if a"AdsAdh
#0 at z. But by (2, 6),

a"Ads Adh=nl{s,h}dy dx,

where
dy=dyger+dy,, dr=dx"«..dx°,
Hence o#0 at z if and only if {s,A}+0 at z, .

We denote the family of all symplectic 2n-submani-
folds of 7 by (.

Proposition 2: Let 0 < §; and g 0,. Then goe ¢, and
the restriction g:0 — g0 is a canonical transformation
from (0, a,) onto (g0, a,,).

Proof: Let g* denote the pullback map defined by g,
taking forms on g¢ to forms on o, Then the invariance
of o implies

gra,,=ag, 2.8)

thus «,, is nondegenerate, hence symplectic (it is auto-
matically closed since « is closed). Thus goe §,. To
say that g :0 — g0 is canonical means precisely that

@, and w,, are related by (2. 8), .

We will be mainly interested in the special case
where 2(z) = (%)% - X for some x> 0 and s(z) depends
only on x, Then S={x € R™ |s(x)=0} is an n-submani-
fold of space—time R™ hence a candidate for con-
figuration space, and 6=S5- i, where &, is the hyper-
boloid with v,= (A2 +y%)!/2, The following theorem is
physically significant in that it relates the pseudo-
Euclidean geometry of space—time and the symplectic
geometry of phase space,

Theovem 1: Let 0 =5—i%, be as above, Then (0, o)
is symplectic if and only if

s 0ds
=0
ox, ox+ 7

that is, S is space-ov-lightlike.
Proof: On ¢, we have

s y*
fs,n}= 5 5 %0, 2.9)

and we may assume {s, h} to be positive without loss,
For fixed x € S, (2.9) must hold for all y € ©,, hence for

ally € V,. This implies that the vector (2s/0x*) is in the
closure V, of V,, that is,
ds 0s
—— > [ ]
ox, ox*

We denote the class of 0=5-iQ, with

Jds ds

—_—

ax, axve~
by §4. §1 is a subfamily of §; and is clearly invariant
under /2,

3. REPRESENTATION IN K, 0 §,

Every symplectic manifold ¢ has a canonically asso-
ciated measure (,, hence an associated complex Hilbert
space L*(u,). Given 0 c §,, we denote the vector space
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of restrictions of fe K to ¢ by X,. In general K, may
not be contained in Lz(uo). In this section we prove that
when o€ §3, then || /1l 2., =} fll, =i Fll, for all fe K
[in particular, X, is a closed subspace of Lz(u,) and we
have the counterparts of Theorem 2 of I and corollary 1
of I for X,]. Hence each 0 € § is as good as P,, The
proof suggests that §y is the natural class of “phase
spaces” for our approach,

It is remarkable, and somewhat surprising, that so
large a class of phase spaces are admissible, in partic-
ular those with lightlike S, A possible application is
suggested in Sec, 4.

Thus let 6 =5-{Q, < §; and define the forms u {on /)
and u, (on o) by

1 ~ A 1
u:;‘CAa":deyudx“, uq:mcha:) (3- 1)
where C, is given by (3.12) of I. We shall give a con~
crete expression for (,. Since

ds ds

>
x, oxk

and ds+0 on o, we can solve ds =0 (satisfied by the
vestriction of ds to o) for dx® and substitute this into
dx*®, This (and a similar procedure for y) gives

- s \"! as .
u_ { Y2 Yo 0
dax “(aﬂ) axud"

ong, (3.2)
- AL LA
@y, =) == dyy=vily*d
Yu (ay0> ., Yo=¥oy aVy

hence®

as . X es 0 5 AR?

=C, L2y 95 _y"Ydy,dx°, 3.3

Ho R(ax"}o) (ax“” ) Yo ©.3)

We identify o with R*" by solving s(x) =0 for x* =#(x)

and mapping (X - 7y, #(X) - i(x* +y)1/?) to (x,y). We
further identify dy,d%° with Lebesque measure d" d"x
on R®" (this amounts to choosing the nonstandard orien-
tation® dy, -+ - dy,dx". .- dx! of R*), This gives 1, as a
measure on R*”, Note that when s{x})=x" we obtain 0= P,
and .= 4, [Eq. (3.11) of I]. Now s(x)=0 on ¢ implies

83+ 9s ot

0 . _ 9s  ds ot
= 2 S ()= 25+ 2% S @.4)
which can be substituted into (3. 3) to give
3t Y*\ n m
ua:C)‘<1— —a}‘;y—o)dydx
—c, (1 -vi- l) dry dvx., (3.5)
Yo
But
ds ds
—_—
ox, ox“

means |V <1, hence A>0 (1y/y,} <1) implies that u,
is nondegenerate as expected. Equation (3. 5) also shows
that if |9#l =1 for some X, [, becomes “asymptotical-
ly” degenerate at (X,y) as |y| —« in the direction of

Vt, That is, if S is lightlike at (X, £(x)), then u, becomes
small as the velocity y/y, approaches the speed of light
in the direction of V¢, This means that functions in
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L*(u,)—and in particular, as we will show, in X,—are
allowed high velocities in the direction of V#(x) at
(x,tx))e S,

Let 0 € §; and denote the Hilbert space of all com-
plex-valued, measurable functions on o with

Lrlle=f | f1Pue<e (3.6)

by L?(i,). X fis a C” function on 7, we restrict it to ¢
and define || fll, by (3.6). To prove that || fll,=Ifll, for
feK we first show that each fe K defines a conserved

(probability) current on space—time, Let

) =C fy [ Fle-i)|Pd,, (3.7)

where 2, has the orientation defined by d_f)o, so that 7%(x)
is positive. Then

£ 2= [ ) dx®, (3.8)

where S is oriented by dz° (the restriction of dx’ to S
does not vanish since {Vf{ <1).

Theorem 2: Let f(p) be C* with compact support.
Then j*(x) is C™ and

3l
9o (3.9)

e
Proof: By (3.2),

i) =Gy Jo, 9" [ fle = 19) [2d (),
where d,(y) =dy,/y,. The function

(3.10)

F2(y,p,9)=v* explix(p~ q) - v (b + D F(P)F@)
is in L}, X2 x ), hence by Fubini’s theorem,
)= @G, fo A3 fo, dRUPYARG)FE(Y, 1, )

= @1)"C, [, A2(P) dUg) explix (p- )]
<F(p)f@) fﬂxdﬂx(y)y“ exp[- v(p +q)]
= @1)7Cy [, A2(P) d2Aq) explix(p - q))

<FOF@L(p" +a*)/al@mx/m* K, (),  (3.11)
where n={(p +¢)*]!/*= 9m and we have used (A6) of L
Differentiation under the integral sign to any order in x
still gives an absolutely convergent integral since f has
compact support; hence j* is C”. Differentiation with
respect to x* brings down i(p, — ¢,) from the exponent,
hence (3. 9) follows from p? =¢°=m?. .

Remark: Equation (3. 9) can also be given a geometri-
cal argument. Let B,={yc V,lv,> (A2 +y")!/% oriented
by dy =dy,- - *dy,. Then §,=- 8B, (2, is oriented by
dy,), hence by Stokes’ theorem’

) = ch/ | foc—iv)|2dy,
3B,

=G / a(| 712d3.,)
By

alfi®
:—C /——d',
A B ayu }

x

(3.12)

To justify the use of Stokes’ theorem it must be shown
that the contribution from |yl — < to the first integral
vanishes. Then (3. 9) is obtained by differentiating under
the integral sign (which must also be justified) and using
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axe oy, O 3.13)

which holds for f€ K. Equation (3. 13) depends upon both
the holomorphy (or antiholomorphy) of f and the fact that
f satisfies the Klein—Gordon equation-—that is, it holds
for positive-energy (or negative-energy) solutions only.
For such solutions (3, 13) states that (317 1%/av,) isa
“microlocal” (local in phase space) conserved space—
time probability current for each fixed y € V,. Hence
the scalar function | f(z)!? is a kind of “potential” for
the probability current, We can now prove our main
result.

Theovem 3: Let 0 =S-iQ, € §y and fe K. Then
WA =1 f I

Remarks:

1, Properties (a)—(c) of Theorem 2 of I have
counterparts for K.

2, As before, we obtain a resolution of the identity
by polarization,

3. LethL2(9), let f be the corresponding function in
K, and let £, be its restriction to o€ ;. Then }i fl|
= flls =l fl,. We will always regard X and K, as
Hilbert spaces and identity K, =K = L}().

Proof: We will prove that [} fil, =1l f]l, when f(p
€ /)(R™), which implies the result for arbltraryf e L¥(Q)
by continuity. Let S be given by x,=1£(x), and let

Dp={xcR™!|Ix| <R, x40, tx)]},
Egp={x<c R™| |x| =R, x,€(0,tx)]},
Ser=1x € R™| |x| <R, x,=0},
Sp={x e R™| x| <R, x,=t®X)},

where [0, £(x)] means [#(x), 0] if #(x) <0, We orient Sy,
and Sg by dxy, Eg by the “outward normal”

A
== 2 xhaz? 3.14
R 2 : (3.14)

and Dy, so that 8Dg=Sz— Sz + Ex. Now let f(p) € /) (R™).
Then j* is C~, hence by Stokes’ theorem,

L S L= [

_ "
=(-)" T =0

We will show that

A(R)EfERj”da?“ ~0 as R—, (3,15)
which implies that

17152 1im s g dx* =Lim [ _j*ai= | £}
To prove (3.15), note that on Eg, dx®=0 and

@it —xkif%zxk%z...:xkf:, (3.16)

each form being defined except on a set of measure
zero; hence ¥=Rdx!/x!, By (3.10), [j*(x)| <j'(),
hence
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la@®)| =

n/ERJ @R =n _[ER]"’(x)ysa(R). @3.17)

Now by (3.11)

F0) = J2nd’p d'q explix (p - q)10 (0, ), (3.18)
where
v+l
o®,q)= (Zvr)"‘fo(p)f(Q)(m *q “)(2—’,;“) K, 1),

with 7= [(,b +¢)*)'/*> 2m, Let D be the operator -V,
where ¥ =x/R, and observe that (for x € ER)

D exp(ixp)
=— iR(l - %9? . v) explixp)= - iRE(x, p) exp(ixp),

(3.19)

where v=p/p,. Since ¢ cD(Rz"), there is a constant o
<1 such that 1v| < « for all p< supp¢. Furthermore,
since |Vt| <1, given any e > 0 we have |x;| <R(l +¢) for
x € E, with R large enough; hence

lt,p)[21-a(l+e), xcEr pesuppp.  (3.20)
Choose 0 <¢ <1/a -1, substitute
exp(ixp)= Rg(x 7) Dexplixp), xecEg (3.21)
into (3.18) and integrate by parts:
0y — — npy g0 i - M
)=z /RZHdpdlep[zx(P q)]D<£(x,p))
1 .
) Rznd"b dg explix(p~ )¢ 1p,q).  (3.22)
This process can be continued, giving (for x cEj)
J2) = GRY™ [ d"p d"g explix (p ~ )19} (0, ),
‘N:lpzy‘”'; (3-23)
where
o “\w
¢y (0,q) = ( ) ¢@,a)={x-v, <1— =k V> ?(P,q).
(3.24)

Now [D(1/£)]" is a partial differential operator in p
whose coefficients are polynomials in D*(1/¢),

k=0,1,.,.,N, We will show that for x € E, with R
sufficiently large, there are constants b, such that

le(l/E)I <b,, k= 091,2"“ (3. 25)
which implies that
"¢!|!L1(R2")<CN, xEER, N:1’2,°°° (3-26)

for constants Cy, so that by (3.17) and (3, 23),
a®)=n [ % <nr"" f o lstestny? )
E ER

R
R{f+e)

<nR'NCN F( 7- dx()

2n1r

=T 2)CNR

F1+e)—~0 as R—w
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if we choose N>#n, To prove (3.25), note that it holds
for k=0 by (3.20) and let u=x.v, Then

o - 1 -2

Du= G V)G p/po) =5
and if

Dhu=P,(u)/ 1}, (3.27)
where P, is a constant-coefficient polynomial, then

Dy, — P,,(u)Du kP:f?it) = Pk.,.:(zf) ;

s b2 5t
hence (3, 27) holds for k=1,2,... by induction. Thus
(1

Drg=— R =2 phy — Eu_pol’ B=1,2,++,
which implies

|Dre| < ——maXIP @], (3. 28)
But D*(1/t) is a polynomial in 1/¢ and D¢, D%, ..., D*,
hence (3. 25) follows from (3. 20) and (3. 28). .

4. DISCUSSION

1, The phase-space approach appears to resolve some
difficulties!® ! encountered in the usual (space—time)
theory of Klein—Gordon particles, which goes as
follows: The counterpart of X is the space 4 of boundary
values f(x) of flx - iy), f€K, asy—0in V,, For a given
spitzcelike surface SC R™!, the norm in 4 is defined
by

17lls=J g7t a5¥,
)= Tm {f( )af("’}

The current J* satisfies the continuity equation (3. 9),
ensuring that [} f|l s is independent of S, Now the
Newton—Wigner postulates!® for “localized states”
uniquely determine these states (at time x;=0) to be

Ix(0) = 27)"/ Vo exp(~ iX. p) 4.3)

[these are the generalized eigenvectors of the position
operators X, of Eq. (4,1) of I|, Hence the configura-
tion-space probability density at time xy=0 is given by

p(x)= |<¢x!f>L2(9)‘2
—en [ [ T exlix- o -l

4.1)

4. 2)

(4. 4)
This expression does not coincide with
7= seny [ fa (L + L) e
xexplix- (p'- p)], (4.5)

which is the probability density associated with the cur-
rent J*(x), In fact, J°p(x) cannot be the time component
of any space—time vector field (which shows once
more!® that sharp localization, in the sense of Newton
and Wigner, is incompatible with relativistic co-
variance). This is the first difficulty, The second dif-
ficulty is that even if one gives up the notion of localized
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states as a fundamental concept, J“{(x) cannot be ac-
cepted as the probability current since it turns out that
Jx) can be negative, ! (Even for positive-energy solu-
tions, i.e., fe/, for which || fils is actually positive
definite!)

By contrast, our expression k) is nonnegative as
well as being the time component of a vector field;
hence the second difficulty is clearly resolved in the
phase-space framework, As for the first, note that if
“sharp” localization in space is replaced with “soft”
localization in phase space—i. e., replace the ¥,, which
satisfy (v ldp2¢q, =0(X'— X), by the ¢,, z ¢ 6 for some
o0& §y—then we obtain

pa)= Ke,| Pz |t= (4. 6)

)2 fek
as the probability density (with respect to L ) in phase
space, This, as we have seen, is compatible with (in
fact, gives rise to!l) the current j#(x), The price of this
compatibility is that 1°(x) can no longer be regarded as
a sharp probability density but, rather, is the average
of the “soft” density p(z) over the “mass shell” Q,
Accordingly, j*(x) depends on the parameter ) which
measures, very roughly, the extent of spatial smearing
associated with the continuous basis e,, z € 0 C P3,

2. In I we have seen that » =0 can be admitted as a
limiting value in the relation || fll, =1l fll, provided [ is
interpreted as a boundary-value function, Similar con-
siderations apply to general o P§, o<y, when x— 0,
Thus the family {4 could be slightly enlarged. Note that
the expression (3. 5) for i, shows that even when x=0
(i.e., ly/yyl =1), L, is nondegenerate except at those
(X,y) for which (a) |Vt{ =1 (i.e., S is lightlike at x)
and (b) y/v, ="t This set is of measure zero in R?",
and on it f€ X may develop singularities (caustics).

3. In recent years there has been progress in the
quantization of field theories on surfaces other than x,
= const, ! In particular, the so-called “lightlike
quantization” uses surfaces which are everywhere
lightlike, and appears to have practical applications,
The transition from x;=const to lightlike surfaces ap-
pears to present mathematical problems!®; possibly the
present formalism, when extended to quantum field
theory, can be of help.

14
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APPENDIX

We give here a brief description of the pullback map,
used throughout this paper,

Given two manifolds M and N of dimensions m and »
respectively, a differentiable mapping g: M — N can be
expressed locally as g:U— V where U and V are open
subsets in R™ and R", respectively. Then the differen-
tial map g, maps each tangent space M,, x € M, to the
tangent space N, at gx € N and is given in local co-
ordinates by
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i
A=y, aj=2%;

£ (a1)

The pullback map g* takes the dual N}, of N, to the dual
M} of M, as follows: The linear form p:N,,—R is
mapped to the linear form g*p : M, — R defined by

(g*p) (&) =p(g,t). (A2)

A 2-form on N is a bilinear, skew-symmetric map-
ping a : N,XN,-- R on each tangent space N,, y& N,
The map g defines a map (also denoted by g*) taking
2-forms on N to 2-forms on M, as follows,

(g*a)&, £ =0(g,t,8,8), & & eM,

In case M is a submanifold of N and g denotes the
inclusion map, we have A}(x)=5}, x € M; hence g*a
is the restriction of o to vectors tangent to M,

(A3)
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Unitary analytic representations of SL(3,R) and hadronic

Regge sequences?
Y. Giiler

Physics Department, Middle East Technical University, Ankara, Turkey

(Received 11 April 1977)

The unitary, analytic representations of the covering group SL(3,R) are determined in the space of
functions H{(z) which are derived from homogeneous functions of degree — b,. Four Regge trajectories,
[N}, {p}], {m], and {A], are associated with these representations.

. INTRODUCTION

This paper is a continuation of a previous work, "' in
which two-different principal series of representations
of the noncompact group SL(3, R) were obtained. The
role of the unitary representations of SL(3, R) in physics
was mentioned there. One of the interesting applica-
tions was achieved by Biedenharn, Cusson, Han, and
Weaver.? They used the Jordan~Schwinger boson con-
struction to obtain four primitive representations of
SL(3, R), and they associated these four representations
with four known Regge trajectories {[I}=(;=0,2,4, -
{P}: (i= 1,3,5, ): {‘V}:( 1= %’ j’ 4,+), and {A}
=(j=3%,%, &, ---). Besides, Sijacki’® obtained three
Regge trajectories {[I}, {p}, and {N} as the multiplicity-
{ree representations of SL(3, R). The aim of the present
paper is to extend the work done in Ref. 1 to obtain
boson and fermion Regge trajectories.,

li. THE LIE ALGEBRA OF SL(3,R) AND THE
CONSTRUCTION OF Z OPERATORS

The Lie algebra sl{3, R) of SL(3, R) consists of
3x3 real traceless matrices. We will use the Cartan
decomposition of an sl(3, R) matrix to introduce the
maximal compact subalgebra su(2), The Cartan decom-
position of an s1(3, R) matrix is the decomposition of
a traceless real matrix into the sum of an antisymmet-
ric and a symmetric matrix. Antisymmetric matrices
form the maximal compact subalgebra su{2). This
decomposition corresponds to the decomposition of an
SL(3, R) matrix in to the product of an SU(2) and a
symmetric matrix.

In this paper we will use the eight generators of
s1(3, R) in the form that they are used in Ref. 3. Matrix
representations of the generators in three dimensions
are given as

0 ~-; 0
Jn: 4 0 0 s
0 0 0
0 0 z1
Jo=dxid,={ 00 —i),
+1 0

DResearch supported in part by ' rkish Scientific and Techni-

cal Research Council,
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1 0 0
To=-i(H**l0 1 0},
0 0 -2 "
0 0 i i 10
7,=l0 0 11, T,={+1 -; 0
i 1 0 0 0 0

where the generators J,, J, form the su(2) subalgebra.
In this representation commutation relations are

[y, J.)=+J,, [T, T,,]=6"%J,,
[7,, J.1=24,, (T, T ,|=8%J,
0, T, \=uT, (p=0,21,%2), ([T, 7T, /=20, (2)
[, Tul=[8 —pDPT,,, (7., Tol=-2J,
(7. Topl =4y, (T, Tol=-2J..

Since the representation of the generators is different
from those of Ref, 1, [Eq. (1)] one should reconstruct
the matrix @ and check the commutation relations of
its elements using the generators Jg, J,, and T, (u
=0, 1, +2). This is essential for the construction of
Z operators.

The nonzero elements of 8 X8 metric matrix ¥ are
AN
’ F78“ =24

3)

ANp— — L [ —
Fiy=5, F13*24: Fu-*‘za; Fss“

S

&

—

Determination of the matrix £ with operator entries and
satisfying the equation

UQUu'=AQA™ 4)

is the starting point of our construction. Here U is any
representation of SL{3, R) and A is its 3 x3
representation.

The matrix € defined as

Q=y, F M, (h,1=1,...,8) (5)
satisfies Eq. (4) in which v, are the generators of 3 x3
representation of sl{3, R) just as given in (1) and M, are
the generators of any unitary representation of sl(3, R).
The method to determine the Z, (j=1,2} operators is
completely similar to the one used in Ref. 1. The
method will be just summarized for the sake of
continuity.

The explicit form of the matrix Q is

(W IM, - M, ~M,) —2iM, + M, =M, i(M, —Mg) + M, - M,

Q= 2:M, +M, - M, iWEM+ M+ M) - M, + M)+ M, + Mg ).

FM M)+ My -M, (M, +M)+M +Mg ~2iVEIM,

{6)
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The elements Q,, satisfy the commutation relations

[Q,,j, Qk,]:4(6h, Qu ‘Gugm)' (M)
Let
VA
Y= ﬁbz
s

be the eigenvector of Q satisfying the eigenvalue
equation

Qy =219, (8)

The transformation law for the eigenvector ¥ is
UpU™ =y’ = A C(A), (9)
where C(A) is a diagonal matrix,
Defining two operators Z, and Z, as
Z=h U5, Zp=905 (10)
and using the transformation law (9), we deduce
UZ U =2Z,=(A2Z,+ NLZ,+ ANAZ, + AL Z, + A3D)T,

UZ,U'=Z,=(A}Z + A3 Z,+ MDA Z, + A Z, + AH
(11)

iH. CONSTRYCTION OF THE REPRESENTATION
SPACE

Unitary irreducible representations of SL(3, R) will
be labeled by the real eigenvalues of two Casimir
operators C, and C,. Defining C, and C, as

Clz TI‘QZ, (:2:'.[‘1‘93 (12)

and letting the eigenvalues of Q2 be x, = i(a, +ib,),
r,=1la, +1ib,), we are able to label the representations
in terms of A, and A,, Unitarity condition gives mainly
two classes of representations:

(@) A,=3(a,+ b)), ) A, =a,,

A, =3la, — b)), X, =@y, (13)

Ag=—ay, Ag==~a, —ay,

where b,=b,+j+3(j=0, 3, 1,3, -+-). The choice of
b, in this form enables us to introduce the Casimir
operator J%=3j(j+1) of the su(2) subalgebra as a part
of C,.

The common eigenstates [z(2x,), A, A,, &) of commut-
ing operators Z(2x,), C,, C,, and K= exp(-27ij,) are
taken as the basis of the representation space. The

discrete operator K commutes with every generator of
sl(3, R). This can easily be shown by using the equation

KM, K*'=M,+ [2midy, M,]++ -+ (14)
and the commutation relations (2). Besides
KZ 2N )K 1 =2Z,(2))), KZ (2K =Z,(2x,). (15)

Since the eigenvalues of matrix J, are 0, é, 1, .-+, the

eigenvalues % of K are 1,

In order to determine the transformation law of the
eigenstate 12(2x)), A, A,, &), all the generators M,
should be written in terms of canonically conjugate
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operators I, and Z, in a such a way that they will have
proper commutation relations.

Commutation relations of elements 2,; and Z, enable
us to express the generators M, in terms of Q,; pro-
vided commutation relations (1) hold. The explicit form
of Q gives all M, in terms of ©,,. In fact,

M1 + (1/4i)(921 - Q12):

My=(1/40)[, ~ Ry + 1(R5 — ),

M3 = <1/4i) [932 - Qza - i(ﬂxs - 931)];
M,= (i/Z\/—g)SZBS,

M, = (1/42) [‘le + Q31 + i(ﬂzs + Qsz)],
M6: (1/42){_ (913 + 931) + i(QZ‘} + QBZ)}?
M7: (1/4i>[(922 - ‘Qu) - 3‘(912 + sz)]y
Msz (1/43.)[(922 - Qn) + i(QIZ + Q21)]-

(16)

The procedure to determine the transformation law of
the eigenstate 1z(2x;), X, X,, k) is completely similar
to the procedure which was followed in Ref. 1. Hence
the detailed calculations will be omitted, and the trans-
formation law of functions f(z, n) will be given:

"oy .
U(A)_f(z,n):[”l—%%%] b - gy e, ), (D)

where 71 is a real variable. Analyticity imposes the
condition that b, is a positive integer n. In the Hilbert
space of functions f(z, n) an invariant scalar product is
given as

(fir fo)=c [ filz, m) f(z, ) | Imz | ™2 dx dy dn. (18)

Hence, we have shown that the Cartan decomposition
of si(3, R) algebra also allows us to construct Z opera-
tors such that the analytic functions f(z, n) which form
the representation space transform like (17) provided
by=b+j+z=n

1IV. HOMOGENEOQOUS FUNCTIONS AND REGGE
SEQUENCES

Now, let us consider the space of functions®
H(b,, ¥,, ¥;) homogeneous of degree —b,. By definition

H(EPy, gy Eg) = £V HY,, sy ), (19)

where £, ¥,, ¢¥,, ¥, are real. The homogeneous functions
H(y,, ¥,, $;) are the eigenfunctions of the discrete
operator K with eigenvalues +1, Hence

KH(%, wzy wg):H(—wl, ‘d)z: _w:}):H(wl! d)Z’ ‘1[)3) (20)
or
KH(d’n Py 11)3):3(“‘1)1; ~ Py —d)g): ‘H(‘[)u P2y ¢3)§ (21)
letting &£ = [ £] sgn¢ and using Eq. (19), we obtain

H(gy, 35, £00)= [£] 1 H(sgntd,, senty,, sgnty,).

(22)

For sgn¢ <0 the above equation becomes

H(EY,, £n, Es) = ‘gl-bl(Sgng)EH(d)n a2y Ps)y (23)

where e=0,1 are the eigenvalues of the operator
P=(1-K)/2; letting £ =1/%,, we obtain function
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H(z,, z,) =H(z) in terms of homogeneous functions
H(Zpl’ sz, Z.bg)- In fact

H(by, by 95)= |41 (sgni,)  H(z). (24)

Transformation properties of §,, ¥,, and ¥, makes it
possible to obtain the transformation of H(z):

HE, s, 93) = 93] (sgnyy) H(z'). (25)

Noting Az, + Az, + A= 8z + 5 and doing necessary

3

calculations, we obtain
U(A™) H(z)=(Bz + 6)"*18gn(Bz + 8)* 1 H(z'). (26)

Since ¥,, i,, and ¥, are taken real, H(z) is a real
variable function. But, assuming analytic continuation
is possible, H(z) should be defined on the complex
space.

The use of the Hilbert space of homogeneous functions
as the representation space introduces additional
[sgn(Bz + 8)1"%: term into the transformation law which
destroys the analyticity. Therefore, we will remove the
sign function by taking

[sgn(Bz + 6))71=[sgn(Bz + 5) |". (27)

Removal of the sign function imposes two conditions on
b,:fore=0,1
(a) b,=bl+j+%
=even integers except zero (fermion) (28)
) b,=bi+j+1%
=o0dd integers (boson).

Since J can take values 0, 5, 1, -+-, b} can only take
the values 0, 3, 1, - -+ . Therefore, conditions (28) give
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the following four sets of J values which are associated
with four Regge trajectories,

for e=0, b,=1, {N}trajectory,

(2) J=3%, %, &, for e=0, b,=0, {A} trajectory,

(3) J=0, 2, 4, fore=1, b)=%, {r}trajectory,
b 1

(4) J=1, 3,5, fore=1, b/=3%, {p}trajectory.
’ 1 s P

V. CONCLUDING REMARKS

Unitary, analytic representations of the covering
group SL(3, R) are determined using operator formal -
ism. Representations in the space of analytic functions
H(z) which are derived from homogeneous functions
H(4,, ., §;) coincide with special representations
(a,=0). The Cartan decomposition of Lie algebra
sl(3, R) enables us to introduce the maximal compact
subalgebra su(2). The analyticity requirement of func-
tions H(z) leads to fermion (r =0) and boson (¢ = 1) Regge
trajectories which were obtained in Refs. 2 and 3 using
different methods.
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The SU(4)>SU(2) ® SU(2) chain
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We consider the physical SU(4) DSU(2) ® SU(2) chain. With the help of the three vectors (S, T,
0.), (V5, VI, v, (WS, W7, W) we can easily write the three fundamental invariants I, I5, I; the
two operators 2 and @ (eigenvalues w and ¢) of Moshinsky and Nagel [Phys. Lett. 5, 173 (1963)] and we
are able to construct a new pair of operators playing the same last role. We write them s
=3, (=)*V5V:, and t =3,(— )V V7, (eigenvalues o and 7). In any (pp'p") irreducible representation
(IR) we define semireduced matrix elements <8’ S'T" || Q || ST» (and the same for V< and W?),
where 0 is any of the two pairs (w¢) or (o7). For the unknown Zy,<6'S'T || Te H 0ST)

o's' T || T2)| 6ST> (T? any one among Q, V2 or W?) we give a set of equations which allows

the complete solution of the calculation of these quantities. Besides we give the explicit values of these
unknown for T¢=T£ = Q for any (pp'p") IR and, S=p and any T, or T =p and any S. In the
particular case of the (320) IR [with 8 = (w¢)] where the multiplicity reaches 3 for § =1, T=2 and
S =2, T=1, we have completely solved the problem; i.e., we have calculated the square of the
semireduced matrix elements of Q for any value of the label (we ST), together with all the eigenvalues @

and ¢.

I. INTRODUCTION

Since 1937, the year when Wigner! introduced the
SU(4) group in physics, together with the concept of
supermultiplet, the unimodular unitary groups SU(x)
have accounted for many symmetries in such areas as
atomic and nuclear spectroscopy and elementary parti-
cles. ? These SU(z) groups are nowadays a fundamental
tool in the hands of theorists and they have been the
subject of many a work. * Their study has led to impor-
tant results when the labeling of the states is built on
the canonical chain of unitary groups SU®R)> U —1)
Dee« DU(1), Unfortunately—for SU(4)—one often has to
use a noncanonical classification of the states if one
wants to exhibit the quantities of physical interest.

Most of the results previously obtained are no longer
adapted and the study of these noncanonical group chains
is much poorer and faces numerous difficulties.

In the case of SU(4) the physically interesting group
chain is the chain SU(4)> SU(2)®SU(2)—often called
physical chain—which displays explicitly the two spin
and isospin SU(2) subgroups. This chain does not allow
a complete labeling, as the two subgroups give only four
quantum numbers: The spin S§ with its projection Mg, the
isospin T and its projection M,. We need two more
labels to have a complete description of the states of a
given (pp‘p”) irreducible representation (IR), This
problem can be solved in many ways: by a projection
technique, ® by the so-called “elementary multiplet”
method, ® or by the diagonalization of a complete set of
commuting operators. ’ This last method is particularly
interesting to the physicist for several reasons: It is
the only one which gives an orthonormal basis of the
states; it allows a certain liberty in the choice of the
complete set of commuting operator, it corresponds to
a technique appropriate to quantum mechanics and the
state labeling problem sometimes corresponds to a
search for eigenvalues of quantum mechanics. A lot of
work has been devoted these last years to the quest for
convenient operators. In the SU(4)> SU(2)®SU(2) case
the number of missing labels is two, and the number of
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functionally independent missing label operators is
twice the number of missing labels, i.e., four.®In
1963, Moshinsky and Nagel® gave the expression of a
pair of such operators which we call, after them, € and
®. We shall see that we can just as well take another
pair, which we call s and ¢ (Sec. II). '

This paper gives the main results of work concerning
the calculation of the matrices of the generators of
SU(4) in a given (pp’p”) IR in which the states are
labeled by the spin quantum numbers S, Mg, the isospin
quantum numbers T, M, and the eigenvalues of one of
the pairs (2, ®) or (s,?), or some other pair to be dis-
covered. We call this base the physical base in what
follows. In order to fulfill this program, one can for
example search for a unitary transformation allowing
one to go from the Gel’fand basis to the physical one.
This method has the defect of being often very technical
and not very clear. We have done an algebraic infinites-
imal study of the group chain SU(4) 2 SU(2)®SU(2) with-
out prior knowledge other than of the physical Lie alge-
bra of SU(4). This process does not require deep know-
ledge of group theory, and demands no particular cal-
culus technique but the Wigner—Racah SU(2) algebra.
This program may appear to be either too ambitious
or rather vague; this is only partially true. In fact, in
SU(4) one is often limited by the feasibility of the cal-
culation which forbids a complete algebraic solution and
obliges one to use computers. Consideration of an
adapted base from the beginning makes the calculation
simpler, and as it was essentially our goal, this adapted
basis has the advantage of emphasizing the particular
properties of this group chain,

In Sec. II we define the SU(4) algebra. In Sec. III we
discuss the labeling problem of the states; besides this
we show that the Racah formula, ! which gives the
multiplicity Nsr(pp’p”) of the states of given S and T in
a given (pp’p”) IR, can be given in an other form,
which facilitates the calculation. In Sec. IV we define
the semireduced matrix elements of the @, VQ, and W9
vectors. In Sec. V we give the set of equations satisfied

© 1978 American Institute of Physics 511



by the semireduced matrix elements of @, V9, and W9,
With these equations we can obtain the square, or the
product, of the semireduced matrix elements of @, V7,
or W9, including a summation on the labels (w, ¢) or
(o, 7). In the particular case T =p for any S (or S=p for
any T) we give an explicit formulation of the square of
the matrix elements of @, Finally in Sec. VI we search
for a complete determination of each matrix element of
Q, labeled by (w, @) or (0,7). As an example we have
completely solved the case of the (320) IR with the

(w, @) label,

Il. THE SU(4) ALGEBRA

The Lie algebra of the SU(r) groups—and particularly
of SU(4)—is well known.* Usually the algebra of SU(4)
is written in its canonical form, i.e., with the genera-
tors E;; (i,7=1,2,3,4) which obey the following
relations:

(1) the commutation rule

(Eij, Exl= 0, Ei1 = 8i1E4;, (I1. 1)
(2) the Hermitian conjugate relation
El;=Ey, (L. 2)

(3) the unimodular condition. We write it with the
aid of the number operator N of U(4),

4
N:E E“,
i=1

and so the number of independent generators is reduced
from 16 to 15,

This canonical writing is particularly simple and
leads to relatively easy calculations, But for the physi-
cist, it has the major disadvantage that the SU(2) sub-
algebras of spin and isospin do not appear. In this
paper we are interested in the physical aspects of
SU(4). So we define new generators, which make these
spin and isospin subalgebras appear explicitly. In what
follows we shall often denote by X any of these
generators:

Ty=3[Ey + Eyy = Egg= Eyyl, Sq=32[Ej ~Egy+Egy~Eyyl,

1 1
Ty=- E[Ew +Eyl, Si=- 72 [Evy + gy,

1 1
T = (Ey +Epl, Soq=-—[Eqy+Egl,

; ﬁ[ st +HEpl 1= 75 (Ey1 +Eg]

1 ) -
@ =Eq,, Q10=—‘/——‘2[E1z-b34], Qi == Eg,
(11. 3)
1 a

Qm:_-x/—f_[Ets"Lu], Qoo =3[ Ey1 = Byp = gy + £y,

1
Qo = Ne [E3 - Epl,

1
Q-11=_E23’ Q-10=\/—§.'[E21-E43], Q-1~1 =E41.

These generators obey the following commutation
rules.
[S‘,_,S,,]:‘/—z_(—)" 0(111; u+v, - ,J-)Suw’ [su.; Ti]:o
[Ti’ Tj] = \/_2_(—)1 C(lll; i+j, - i) Ti+.7"
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[Suerd]zﬁ(_)u 0(111 s K +V, - H)Quw{:
(T4, Quil=V2 (<) c111;4 +j, = 1) Qu1u;
[Q‘”,Q,,j]=‘/—2—(—)“ﬂ{5“]~,0c(111; 93 +V: - H)Suw

(II. 4)

+ Bany0 (1113 4+, =) Ty, 5}
The indices u,v,4,j can take the values 0;x1, This
basis exhibits clearly the SU(2)s and SU(2), spin and
isospin subaigebra, through the generators S, and T,
respectively, which are here written as canonical ten-
sors of SU(2). On the other hand, the @,, generators
are (17) and (1p) tensors respectively in relation to
the SU(2), and SU(2)s subgroups.

Finally these generators obey the Hermitian conju~
gate relations

Sh=(=)"Sms TiI=(=)'T,, QLi=(=)""Qoui. (IL. 5)

I1l. THE STATE LABELING PROBLEM

Biedenharn'! has shown that two more vectors other
than the fundamental generators can be constructed in
SU(4) with the aid of completely symmetric coefficients.
They are easy to calculate; let us call them V and W.
They are

Vﬁ = 2 (")iTiQa-i,
i

ViT:Z) (—)aSaQ-ai’ (III. 1)

Ve, =S, T; + 25 (=)**c(111; a, - 1)

L
XC(lll; i) -j)Qu,an-u i=j»
and

Ws=2J (ST Ve + Vi),
i

Wi =23 (=) 5a Vi + V3 Quaihs
. . (III. 2)
W =S Vi+T,Va+22 (=) c(lll;a,-p)
u

X (11154, = §) Qus Ve iuse

These vectors satisfy the same Hermitian conjugate
relations as the generators (IL. 5).

Following Biedenharn!! we can easily construct, with
these vectors, the three independent invariants of SU(4):

L=20 (=)*8, Suy + 5 (<N T, Ty + 2 (=)*71Qu @,

L=20 (=S, VS, + 25 (=} T, VI + § (=)*1Q,. Ve .,
i “

u

(1. 3)
Li=20 (=S, W5, + 20 (=) T,Wh + 25 (=)*'Q, W3,
7 i wi

Let us notice the equality of the two first terms of (I5)
25 (=)S, VS, = ;‘ (=NT,VE = E‘ (=)**5,Q T,  (IIL.4)
1% 122

Furthermore we remark that the vectors V and W allow
one to define three other invariant operators:
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I=20 (=)*VSVS, + 2 (<) VIVE + 20 (=) v Vi,
I i wi

IG = Z) (_)“VEW-SM- + 2 (_)iViTW-Ti + Z; (_)M“VgiW?u-i,
“ i ui

L= (=)*WEWS, + 2 (=)' WIWT + E, (=) WIWS, .

23

(IIL.5)

These invariants can easily be related to the three
fundamental ones above with the result
I=%1, I;=3%0,+3), 17=£2‘L(12+4)+1§. (111. 6)
These three fundamental invariants I,, I;, I, give a
label for an irreducible representation (IR). But we
know that six independent operators, commuting with
one another, are necessary to give a unique label of
each state of a given IR, Four such operators are well
known; they are the spin and isospin operators: S,

Su(=)*S8,S.,, Ty, i(=)T,T_,. As for the two missing
operators several couples are suitable. %1% Nagel and
Moshinsky® have proposed the couple £ and ®, which in
our notation can be written as follows:

Q=21(=)"S, V5 =2 (-)'1,VE,
. ¢ (IIL. 7)

& =20 (=)*S, WS, + 23 (<)'T,WE,.

We have found another pair of operators, which can play
the same role. We call them s and ¢, and they are:
(I11. 8)

S :E(_)uvivfu: t:E(—)'V,TVZ;.

M i
The demonstration of the commutation rules [s, t]=0
and [, ®]=0 is greatly simplified if one uses the follow-
ing equations:

Le(15i+5, =N TV =2 (Il a+p, = a)V5,Qq., )

J 3

25 c(U11;5 45, =) VEQ, y= 21 c(l1l;a + 44, ~ @)
E) o

XS-QVSHL [ ]
(I11. 9)

?c(lll;i+j,—j)T_jW§i”.+E c(ill;a +p, - a)S_ W9, ,

:?c(lll;i+j,—j)W_TjQM”.+E c(ll;a +u,-a)

¢4

S
X W—aQa+u i

We now describe a state with the eigenvalues of the
operators considered above (or the associated highest
weights).

The eigenvalues of the three fundamental invariants
[or, what is equivalent, the Wigner partition (p,p'p")
which corresponds to the highest weight of the opera-
tors Sy, Ty, @go] uniquely label an IR of SU(4). The
eigenvalues of the invariants, expressed in terms of
(pp'p”) are as follows!?:
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(L)=p(p+4)+p'(p’ +2) +p"?,

(I;)=3p"(p" +1)(p +2),

U =2{p"[(p +1)*+(p' +1)*] +2p"(p +1)
+p'(p" +2)(p +1)(p +3)}.

Let M5 and M7 be the eigenvalues of the operators S,
and T, respectively; let S and T be the corresponding
highest weights relative to the spin and isospin sub-
groups. The eigenvalues of the operators (2, ®) or (s, )
will be denoted (w, @) or (0, T) respectively.

(I1I. 10)

In the basis where £ and ¢ are simultaneously dia-
gonal, the states of the IR labeled by (pp’p”) are written

[(pp'p")@wSM sTM ). (I11. 11)

In the basis where s and ¢t are simultaneously diagonal,
the states are written

[(pp'p”) aTSM sTM 7). (II1. 12)

In order to simplify the notation, when no ambiguity is
possible (all the calculations done in a given IR), we
write the state without reference to the representation
labels

| QwSMTMy) or |oTSMsTMy). (11, 13)

Furthermore, when the sole multiplicity of the states
of given (SMsTM;) is considered, we use a collective
index 6 instead of one of the two couples (w¢) or (07),
i.e.,

[6SMsTM 7). (I11. 14)

Let us now recall the conditions satisfied by the Wig-
ner! partition (pp’p")
lp"| <p"<bp,

L2 <S<p, Ya<T<p,la<T+S<p+p’. (L 15)
In 1949, Racah'' established an algebraic formulation,
which gives the multiplicity of the irreducible repre-
sentations ST of SU(2)®SU(2) in an irreducible repre-
sentation of SU(4). He called this quantity N.5(pp'p”).
It reads

Nes(pp'p")=wrs(p+p",p=p")
—wrs(p+p'+1,p-p'-1)

~wrs(p'+p"=1,p' =p”"=1), (I.16)
where wrs is defined by
wrs(f1fy) vanishes unless 7,S Sflzifl ,
(II1. 17)
2T=2S=f; +f, (mod 2).
When f, 2 f, wrs(fif:)#0 is given by
wrs(fif)=wrs(fofi)=0(f, +2~ [T -S|)
—@(fa+1 =T =8)+@(T +S~f,~1)
—30(T+S= [T =S| =f +f, +1), (I11.18)
where
(x%/4], ifx=0,
olx) =

0 if x <0,
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and {x] means the greatest integer contained in x.

Notice that the labels S and T are totally symmetric
so that

Nsr(pp'p")=Nrs(pp'p"). (I11.19)

Furthermore, the representations (pp’p”) and (pp’~p")
are contragredient, which implies equal multiplicities,

Nrs(pp'p")=Nzs(pp'=p"). (I1I. 20)

Despite its generality, this Racah formulation is un-
fortunately somewhat hard to handle. In a given IR
(pp’p”"), in order to obtain the multiplicities for all the
pairs (7, S), one has to apply the Racah formula in each
(T,S) case. This calculation is lengthy, difficult and
cumbersome. It is for this reason that many pa.pers13
have given a new formulation for N s{(pp’p”). We pro-
pose here a rewriting of this formula, under a recur-
rent form, which is not so general as the Racah expres-
sion, but leads to much easier and faster

calculations.

Observe first that the difference @(x +2) - ¢(x)
=1/2(x +1+ |x +11}) does not depend on the parity of
the integer x. So we can hope to find a simple expres-
sion for the difference,

Ars(pp'p")=Nrs(pp'p") = Npy sa(bp'D"). (1. 21)

Suppose for simplicity that 7> S and p” = 0 which re-
moves nothing of the generality of the problem, We
consider the different cases, and find:

{1)S#0
Ars(pp'p")=35(p=p" =T +S+1

+|p=p"=T+S+1))

Tsp'=1 . ’
—Hp=p'-T+S+|p=-p'-T+S))
_%(pl_prw_T+S+‘pl_p//_T+S|),

(1. 22)
Ars(pp'p)=3(p=p"=T+5+1
+|p=p"=T+S+1|)

T>p'  (=4(p=p'=T+S+|p-p'=T+S|)
—3S=p' =1 +|S=p'=1}])
—3s-p"+|S=p"]),

(2) $=0

Apo(pp'p")

:[P(P—p”+ Z—T)]_[P(P—P’+1—T)]
2 2
_[P(P'—P"+1-T)] . 23)
2 J .
where

Py =t

The Ars(pp’p”) are easily calculated, and one can
straightforwardly derive the Nps{pp'p”) through the re-
current formula

Nes(pp'p"V=Ars{pp'p") + N salpp'p"). (IM. 24)
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In particular one has
Nro(pp'p")=Aro(PD'P"),
Nrayn(pp'p") = Moy (pP'P7),
Nps(pp'p")=Aps(pp'p”)

1 if S=p”,

(1. 25)

0 if S<p”.
IV. THE GENERATOR MATRICES

In a given (pp’p”) IR of SU(4) the matrix elements of
S, and T, are given by the Wigner—Racah algebra of the
corresponding SU(2) groups, !¢

(0'S'MT'M% |S, | 6SM sTM 1)
= 699!655167‘:“06”1'”} VS(S +1)C(SlS,,Ms, jJ.,Mfg),

(Iv.1)
(0'S'M5T M4,

T,|6SMTMyp)
= Bpg 0550 Ore Oy gug VIT + 1) c(T1T"; My, 4, M7).

But we are not able to give so simply the matrix ele-
ments of the @,,; generators. The calculation can be
slightly simplified, when one introduces the so-called
semireduced matrix element (8’S'T’|| Q]| 6ST) i.e.,
reduced with respect to the spin and isospin SU(2)
subgroups®

(0'S'M5T'M%|Q, ;| 6SMTM 1)
= (818" Mg, w, M5) e(T1T"; Mp, i, M) {8'S'T" | Q| 6ST).
(Iv.2)

Now the search for an IR of SU(4) is replaced by the
search for the semireduced & matrix elements,

We define in the same way the semireduced matrix
elements for V and W.

The semireduced matrix elements for VS, V7, Ve,
WS, WwT, W9 can all be expressed in terms of those
of @. For V we have, for example:

B'S'"T'|| VS || 6ST) = 6,0 VT(T +1)€6’S'T | Q| 6ST),
(IV. 3a)

(6'S'T'[| VP11 6ST) = 8550 VS(S + 1) {8'ST| Q1] 65T),
(IV. 3b)
6'S'T’|| V9|l 6ST)
= b5+ Or1e Oger VS(S + NT(T +1)

+3 22 V@S, +1)(2T,+1)

61547y
XW(SS'11; 1S, )W(TT11;1T,)
x{8'S"T* 1Q1] 8,5,T1) (8:5,T1 1 Qll 65T). {iv.3¢)

We shall see later that this last expression for V9 can
be simplified, with a summation only on the indices
6,5, (or 6,7).

The Hermitian conjugate relation @3, = (=)**Q_,
leads to
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0’S'T" ||QIl 6ST)

172
~ s-rerr (LT DA T s iql 67577,

(Iv.4)

The vectors V9 and W9 fulfill the same relation (just
replace @ by V9 or W9),

Let

pplp "
T 0

SMgTMy
be an irreducible tensor. The adjoint tensor is
characterized by

ppip" t pprpn pp;_p/r
T g = 8 T g* , (iv.5)
SM¢TMy SM TMyp/ \S—-MsT My

with 8*=(w*, ¢*) or 6*=(0*,7*), W' =-w, ¢*'=¢, 0*=o0,
=1,
pplpl/
b 6
SM¢TMy

is a phase factor.

Writing the commutation relation of this tensor with the
generator @,; we can establish a relation between the
semireduced @ matrix elements in a given (pp'?") IR
and in the contragredient one {pp’ —p”). Let us consider
the commutator
p[) Ip 7

Quis T 0

SMsTMy

= L App'p")0'S"MET "My |Qus| (pp'p") 6SMsTMy)

s
pp’p ”
x T 8’ (Iv.6)
SMT'M}

Let us conjugate the two members. One obtains, on the
one hand,

pplp// T
QahT 0
SMsTMr
pplpu PP'-P”
— (_)a+i+1 b 9 Q-a-l’T 6t ,
MsTMy S—MgT =My
pplpn t
QabT 8
SMsTMy
pp’p//
:(_)add b ] X Z) <(pp1_pﬂ)9nsl
SMsTMy %ﬁf,

= MET = M5 | Qoo | (PD'=57")6°S =~ MsT = M)
ppl_pll
X T (220

. av.m)
S’ = M5T' - M},
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On the other hand, we can also write

pp’?" \1
Qmi’T 6
SMsTMy
pplpl!
= 2 b 6’ {pp'p")6'S' MET M4 | Q4 |
Ty, \S'MST'Mz
pp’_pl!
X(pp'p") 6SMsTM 1) T 6" (Iv.8)

S’ = M§T' - My

Identifying the last two relations we can deduce the
equation

pplp!/
[ o (pp'p")6'S'MET' My |Quy | (pb'D") 6SM sTM 1)
S'MIT'MYy
pplpll
+(=) e (pp’ ~p")6"*S’ = M5T' = M}
SMsTM p

X |Qugui | (DD"=D") 6°S = M T = M;)=0, Iv.9)

which can be written otherwise,
pp'p”
b 8’
S'Mg+aT Mr+14

(pp'p") 6°S'T I QIl (pp'p") 6ST)

pplpll

+(_)aoios-s'+T-T' b 0
SMsTM,

X{pp’=p")0"*S' T |QIl (pp’' = p")6*ST)=0.

The same calculation can be done with S, or T, in place
of @,;. We are led to the following relation between the
phase factors,

(Iv.10)

ppp” po'p”
b 6 =(=)**p 6 (1v.11)
SMs+a T Mpy, SMcTMp
If we define
pp'p” ry o
b 6 z(b g’;Tp ), (Iv.12)
SMg=STMp=T
we get
pp'p” Iy
b 6 =(=)S-Ms+T-4 1 b(ggfr’ > (IV.13)
SMsTM

and the relation {IV. 14) above can now be written

pp’p” ry M o ’ ? 4 +. pp{p 7
b(a's'T') (pp'p" 6°S'T" IQU(pp'D )95T>+b(esr )
X (pp’ = ") 6"S'T" IQU(pp’ = p") 6ST) =0.

This last relation has two forms depending on whether
or §=(¢pw) or 8= (07):

(Iv.14)

(a) 6=(ow)
po’p” P Y ot e Qe P , pp'p”
b0 ) (e o ")0ws T N (o) sy 402078 )
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X((pp"=p") @' = ST QI (pp" = p*) ¢ = wST) =05
(b) 6= (o7)
b(oé’f,;’,T,) (op'p" om'sT el (pp'p Y orT) + (P20
X((pp"=p") o' T'S'T" QU (pp” = p") 67ST) =0,

In the particular case of IR with p” =0 these relations
lead to the following prominent equations:

On the one hand,

{(bp"0) pwST |IQIl (pp'0) pwST)

+{(pp'0) 9 — WSTIIQIl (pp'0) ¢ = WST)=0. (IV.15)
On the other hand,
{pp'0)orST Q] (pp’0)07ST)=0. (Iv.16)

The semireduced matrix elements we have considered
above, do not exhibit, in the Wigner— Eckart theorem,
the problem of inner multiplicity, the SU(2) group being
multiplicity free. On the contrary, if in a given IR
(pp'p”), we want to reduce completely under SU(4), the
matrix elements of the vectors X, V, or W; we need an
inner multiplicity index p. Using the notation of Hecht
and Pang,?® in the particular case of the labeling by
(¢, w), and @ (which has ¢ =8, w=0), we can write

110
Q| 80
11

{pp'p") ¢'w'S'T" H (bp'p") @wST)

=22 4pp"p XU (pp'p" N,

P

X{pp'p") @wST; (110) 8011l (pp'p") @'w'S'T"),.
{Iv.17)
We have the same form for V° and W9,

Here the index p can take three values (p=1,2,3). To
completely define this index one must arbitrarily fix
three conditions. It is particularly simple to take them
as

Lpp D YNXU (PP D" Vo= pp P "X (PP’ ))s
={(pp"p "IVl (pp'p”))5=0.
(Iv.18)

With this choice we can calculate the six remaining
reduced matrix elements for the vectors X, V, W by

taking the matrix elements of the six invariant opera-
tors I, ({=2,3,..., ) and solving the system. We thus
obtain the following results, in which {l,) designates
the eigenvalue of the invariant I,:

Copp XU (pp'p ") = (I N2,
Upp' D"V (pp "D "))y = —Qﬁm
K1)
)1/2

2
(op'p NIV 'y, = U Tadn I

{(op"p"YUWH (pp"p ")y = (<—§21§3>rn ,

100 Py . <11 >- (l I>
{pp" )W (pp'p "))

_((<1215>— <1§ >)(<1217>" <1421>)— ((Izl(,‘)— <I3I4>)2>1/2
- (I (LI )= (I5)) )

(Iv.19)

The Kronecker product of the IR (p00) or (pp +p)
with the IR (110) is multiplicity free. This means that
p can take only one value. In fact we see that:

(a) For the (p00) IR, only one matrix element is dif-
ferent from zero

{(p00) IIX1| (p00)); = p(p +4); (IV.20)

(b) For the (pp £p) IR all the nonvanishing matrix
elements correspond to the same value of the index p:

{pp =PIXI (pp £p)) = V3p(p +2),
Lpp PV (pp£p)) == (p +1)V3p(p +2),
{pp £p) IIWI (pp £p))1 =2(p +1)*V3p(p +2),

(Iv.21)

It follows that the semireduced matrix elements of V¢
and W are zero for (p00):

{(p00) 6'S’T" || V|| (p00) 6ST) =0,
{(p00) 6’S'T*{|W<|| (p00) 6ST) =0.

(Iv.22)

In the case of the (pp £p) IR a proportionality relation
can be written between the semireduced matrix ele-
ments of @, V¥, and W¥:

{pp£p) 0'S'T"IIVOll (pp +p) 6ST)
=+(p+1){(pp £p) 6'S’T"|Qll (pp xp) 6ST),
{pp £p) &'S'T 1IWCIl (pp £p) 6ST)
=2(p +1)* {(pp £p) 6'S'T" |Qll (pp £p) 6ST).

Iv.23)

V. CALCULATION OF THE MATRIX ELEMENTS Z4{(pp'n")0ST i Qll (po'p") 6ST) AND

Zoo'Upp'p")0'S'T' Q| (pp'p") 68T )2

The eigenvalues of the operators & and €, or s and ¢, can be obtained on the Gel’fand and Zetlin basis, by a
diagonalization process. But such a method is very cumbersome and can only be achieved with the aid of a com-
puter. On the contrary, it is fairly easy to calculate J,(6ST ||QIl 6ST) when one writes the conservation of the trace
of the matrix representation in the Gel’fand, and physical basis,

The operators S, and T, are simultaneously diagonal in both bases. For an arbitrary operator, Z, we have
equality of the traces of its matrix representation in both bases. These traces are taken for a given (pp’p”) IR, at

the level of each submatrix labeled by a given Mg and M.

516 J. Math. Phys., Vol. 19, No. 2, February 1978

A. Partensky and C. Maguin 516



Let us introduce the positive integers @, B, v, and w; we can write the equation expressing the equality of the

traces of any Z, in the two basis, for given Mg and M as follows:

p+p’ p=p” p'=-p" 0 p+p’ p=p” p'=p" O
» p+p’ =0 p=p'=B p'=p"=v 7z p+p'—a p=p"=B p'=p"-v
aby p+p-x Mg=p"+x pHp'=x Mg—p"+x
Mg+Mpr+a+B+y Mg+Mp+a+B+y

= 27 {pp'p")6SMsTMy |Z | (pp'p”) 6SMTM ).

[}
SzlMg
TzIMTI

The variables a, B, v, and x, must satisfy the betweeness conditions:

P Hp"=a=0, [)'+P"+Bzx>u,
p-p'2p20, p=Ms—=Bzx2p'=Mg~7y,
p'=p"2v20, pHp'=Ms=Mr=x>a+B+y>=Mp=p" +x.

For the particular case Mg =p, let us take M, = 0, Equation (V. 1) becomes

_ foEp’ p=p" p'=p" O P+’ p=p” p'=p" O

‘““‘{:-:T pHpT p=p" P'=p "=y |, | PHDP p=p" P -p"-¥
g p+p’ p=p" p+p’ p=p”
p+Mgp+y p+Mo+y

= 2 App'p") 9ppTM1|Z |(pp'p") 6pPTM ).
TBMT
1f Z is @y, which is diagonal in the Gel’fand basis, we have to calculate

ming'f;
T - r_pt _ p‘}wT XY’ Y
2 AMr= (= p) 42y} = T;EMT T T (PP TRl (ppp") pT)-

Here 0 is redundant, because N,p(pp’p”)=1if S=p” and 0 if S<p”.

Now we can get, by taking the difference between the two sums ET?MT_ Trsupet the matrix element

0 if T<p”,
{pp'p " T IIRU (pp'p ") pT) =

gt p+1 Y2
p7(p +1)(pT(T+1)) if T=p",

This result is still valid when we interchange S and 7.

(V.2)

(v.3)

(v.4)

(V.5)

Let {T'$,, TS5, T} be any vector following the same transformation rules as the generators {Q,;,S,,7;} and con-

[ T3]
sider the commutation relation

[Qui, ng] = ﬁ(_)u”{éhj,() C(lll; 9 + a, - “’) Tfux + 6u+a.0 0(111; i +j) - i) T?;j}'
Taking the matrix element of the two sides of this equation, let us calculate

20 cQf; 4,6, my) cQAf s,y ml) (0'S'MET 'M4 | [Quy, TS, 6SM s TM 7).
M

au My

We get

27 V@S +1)RT, +1) W(SS"11;£'S]) W(TT"11;£T,)x{(6'S'T" |QIl 8,5,T,) (6,5,T | T°l| 6ST)

91817‘1
= (=Y'S T 1T 6,5,T,) (6:S,T, IQIl 6T}
== V2 {8,007 ,1071% 8'S'T' TSIl 6ST) + 84,150,055 8'S'T' I TTI| 6ST)},
where f and £’ can only be 0,1, 2,
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Consider now the particular case T79=@Q, 6’'=#6, $'=S, T'=T. In order to simplify our notation we write only
Ngr instead of Ngo(pp’p”) for the multiplicity of the states of given ST in the (pp’p”) IR and we define

(8'T" QIST>2=9?;/ (6’S"T"||QIl 6ST)2. (V.9)

The invariant operator 7,, and Eq. (V. 8) give the following five equations between the matrix elements (V. 9):
(@) 27 ST[Q|ST 2 =Nsr{(L)=S(S+1)=T(T +1)},
$1T4
(b) 2 (=)S-St*T-THW(TT11;2T,) W(SS11;18,)(ST | Q| 8, T )2 =0,
S1T1
(c) 2o (=)S=S*T-T W(TT11; 1T,) W(SS11 ; 25,)(ST | Q| S, T,)* =0, (V.10)

SlTi

§-8(+T- . 11 : . T(T +1) 1/2
(d)s%;l(—) 31TT1W(TT11,1T1)W(5511,051)<5T1Q|51T1>2:-AST(m> ,

1/2
- S'Si"T'TIW ‘0T . 2:_ S(S+1)
(e) S%?Tl =) (TT11;07) WSS11;1S,)(5T |Q[S,Ty) NST(—~——2@S R
The notation (V. 9) has a great advantage; it leads to a sixth equation derived from the Hermitian conjugate relation

g (2ST+1)QRT+1) )0,
ST|Q|S'T >2=(_2§+_—1)(2ﬂT)"<S T'|Q|[ST)?. (v.11)

From (a), (c), (d), and (e) we can derive the following relation

SET|QIS~1TY = (S +1)ST QS +1T) =~ :ﬁ-%l{gg- 25(S +1)= T(T +4)}Ngy
+T——?gT++13){2T +S+3)ST|Q|S +1T + 12 4+ 2(T +1)ST|Q|ST +12 + 2T =S +2) ST |Q S — 1T + 1)} . (V.12)

We can now use the Hermitian conjugate equation to write (V.12) in a form which explicitly shows a recurrence in
the variable S,

S(2S = 1)(S— 1T |Q|ST)* = (S +1)(2S +1)1(ST |Q |S + 1T}

__ Qﬁﬁ%ﬁil—){(m_2s(s+1)-T(T+4)}NsT+

(2T +1)(25+1)
T(2T +3)
X{@2T +S +3)ST|Q|S+1T +1)* +2(T +1XST |Q|ST +1)* + @T =S+ 2)(ST|Q |S = 1T + 1)*}. (v.13)

Suppose we know, for a given T, all the matrix elements (ST1Q IS, T +1)* (S, =S, S+1, S~ 1), Then it is possible
to calculate the six matrix elements (ST Q1S,T)? and STI1Q1S,T ~1)%,

First we use the recurrent relation (V. 13) in the calculation of the matrix element (S=1 T|Q|[ST)?,

L+l : iy 2T +1 ,
- ST gs(zs +1){(1, )~ 25"(S +1)—T(T+1)}NS,T+T(2T+3)S(ZS_1) 528(25 +1)

S-1T|Q|ST)=

X{@2T +8"+3)S'T|Q[S' +1T + 1) + 2(T +1XS'T [Q|S'T +1)2 + (2T =S +2)'T|Q|S" = 1T + 1)*}.
(V.14)

When we change S for S +1 we obtain the matrix element (ST QS +1 T)?*. It we now use the relation (V.11) we can
derive the matrix element ST [Q1S—=1 T)?

6TlQls-11p=2=1

=57 8-1 T|Q|ST)%. (V.15)

Now with the five equations of the set (V.10) we can calculate the four other matrix elements, resulting in:

25 +1 27 +1)(2TS +4S + 2T +3)

T+1){S+1)
S TS(2T +3)

stlelstyr=THIE*D (1 55 +2) - T(T +4)} Nz -

(ST]Q|S+1T>2-(

2T +1)(2TS +3S +2T +2)

XEST|Q|S +1 T+1>2-( ST|Q|S T +1)?

TS(2T +3)
QRT +1)S+1)(T +1)
-2 TS@T+3) ST|QIS-1T+1)?,
(25 +3)(T - S) 1 S(2S +3)= T(2T +3)
ST|QIS+1T-1)= 5o T NST—T+1(ST]Q|S+1 T>2-(2T+3)(2s+1)(T+1)(S+1) ST|QIS +1 T +1)?
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(2T +1)(2S +3)

(2T +1)(2S +3) 2 Vel T o Neo TI) - 2
T + DG D O QIS T+ s STIQIs -1 T +1), (V. 16)
S +1)
sTlQls-1 T_1>2:———8Tg§11){(2s+1 N{Ly)=25(S +1) = T(T +4)] +ST(2S = 1)(S+ T +1)} - (T+1)6T[QIS+1 T}

(25 +1)(2T +5 +3) = ST(T +1)(25 = 1 )
'(2T+1){ ST@S + (T +1)@2T +3) )}QNQ'S“ T+

- 1 BST — 28% - 2T% +35+ 3T +2
- (2T+1){T§2%S(2511J{)2(;2%S:3 )}GTIQfS T+1)- ST rnETTy)  OrlQls-1T+

ST|Q|S T-1>2:—S—T]{;:—l){(s+1)2(12>+S(S+1)(82+28+2+2T2+5T)+3T(S+1)(T+4)—T(3T+8)}
42 “ (ST|Q|S+1 1) + 2T g%i;?;£+z)(ST|Q]S—1 T +1)?

+@T + 1){(23 + 1)(§§(;i*1”)3()T++31()7;2;3(;S TOUsriQls +1 T + 1)

(2T+1)[52+4s +2ST +2=T]+S(T +1)[25 +1 - 2T] <5T|Q[S T 41y
ST +1)(2T +3) ’
So we know all the matrix elements (ST -11Q 1S, T)?, for a given T, and Se=S5, Sx1 in terms of STIQIS, T +1)?
and STIQIS +1 T)%. Using the same method it is possible to calculate the six matrix elements
ST-11QIs, T-1® and S T-11Q1S, T - 2)?, and so on.

In the particular case 7 =p, we known that (SpIQ ]Sa p +12=0 and the second members of the various results
(V.14) and (V.16) are completely known. We recall here that Ng,(ppp”)=1 when p’=S=p” and 0 if S<p”, The
result is the following:

(@[S = 1 p) = by 157 = 2 l(p" + 17 - 87,

5p1Q S +1 1= LIS (6 417 = p ) [(p7 + 1= (5 +107),

1
Spl@|spy= p—+(p’+1)2p”2,
pSE+1) (V.17
25+3 [(S+1)2=p"[(p"+1)2 = (S +1)}]
SplQls+1p-1)'=(p~S) 57 - PGS+ 1)@S +1) s
s PP +1SES+1)—(p'+1)%p"?
$p[Qfs=1p-10 =2 Lp 54 1)+ LIS = 0 2 122 p ]

pS(2S +1)

It is now possible, with the equations (V.14), (V.15), and (V. 16) to calculate the other matrix elements with 7'
=p~-1, p-2,-++, and completely obtain all the (ST |QIS'T")2,

If we multiply the two members of Eq. (V.8) by (27’ +1) [(2S; +1)]!/2W(S5/11;£'S,) and sum over f’, we can use
the orthogonality relation of the Racah coefficients, and obtain a relation in which the number of summation indices

is reduced by one,

E V(2S, +1)@T + 1) W(SS'11;18,) W(TT'11;£T) (6'S'T'II Tl 6,8, T ) (8,5, |Qll 6ST)

6517y

N2 W(TT"1; fT , < = . rQrm < 3
:%222 (222:1) ) W((ss'u;{SIi) LO'S' T TN 0,84 T) (655, T HQIl 6ST) = (=¥ (8'S'T*||Ql 6,5, > (6,5,T | Tl 6ST)}

W(SS11; 08
QQr S 1 Q2 T
8,0 0rre <6'S'T" 1T S| 95T>+3r 5,1 0sse WESI1:15)) @'S'T' [\ TTI| 68T). (v.18)

1

“Vz
Due to the symmetry of the roles played by S and 7', the spin and isospin variables, we can exchange them in the
above relation.

Equation (V. 18) gives for the semireduced matrix elements of VQ a simpler expression than Eq. (IV.3c). Let us
take the particular case when f=1, T°=@Q, T7=7T, T5=S and let T be one or the other value T or T'. We obtain

25, +1>”2W(ss'11 15

7 1 (0577 11611 6,5,T) (0,5,T 1l 65T, (v.19)

W(TT'11;1T,)

O'S'T’I|VOI} 6ST) = 2 (

6154
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In the same way, we obtain, with §,, equal to either S or S’,

27, + I\' P W(TT'1L;1T)) v, = = .

('S'T" ||V 6ST) =2
917‘1

By the main of the commutator [QM-, TS,-] we obtain Eq. (V.8). In the same way, using the commutators
[ve,, va,], [v9,, W], [WS,, W3,] we obtain the equations

2o [1= (=) V@S, + )T, +1) W(SS'11; 'S, ) W(TT '11; fT,) {8’S'T" |IV°| 6ST)

21 SIT1

By, ; VST +1)(2S” F 1) W(SS’11; £'S')}6’S'T" | VO} 6ST)

+ 64, o VT (T + D)QRT + ) W(TT'11;£T7) (8'S'T" || VO|| 6ST)

—(2)t/2 _
=) +51,f(_)f'¢2f“l \/T'(T'+1)92S V25, + 1 W(SS'11;7'S,) (6'S'T" 1QI1 6,5,T]) (6,5,T{l @ || 6ST) (v.21)
11

+ 51,f,(-)f'4—"%fi1—) Vs'(s"+1) ,,Z,ﬁ V2T, +1W(TT'11; fT,) 0'S'T’ IQIl 6,5'T 1) {6,S'T, QI 6ST).
191

The same method when applied to [V9;, W] leads to the result

wis

27 V@S, +1)@T, +1)W(SS'11;7'S,) W(TT '11;£T){€0'S"T" |IW?I| 6,5,T ) (8:S:T1 1|Vl 65T

6517y
— (=) (O'S T VOl 0,84 T ) (6,54 T IWC| 6ST)}
81, VST(ST+1)(2S" + 1) W(SS'11;/'S") (6'S'T" {IW°|| 6ST) (v.22)
+64, VT (T' + 1) @T7 + 1) W(T'T'11; fT") ('S'T" ||W°|| 6ST)

=z . d=F1F +1)

+ 817 (=Y 2o VS, +1W(SS'11;5'S,) (6'S'T" |W5|| 6,S,T") (6,5, l|QIl 6ST"

2 454
+ 8y (=) i‘—lcifi’ ¥ VBT, F1 W(IT'L1;£T,) 0'S'T' |WTll 6,S'T ) (6,S'T4 IiQll 6ST).
01 T1
We do not give here the result derived from the commutator [WSi, Wﬂ,] due to its great complexity.

Now using Egs. (V.8) (with 79=V? and T°=W"?), (V.21), and (V.22), the invariant operators I3, I;, I;, and I,
and generalizing the method used for the calculation of (ST 1Q IS'T*)?, we can obtain the quantities:

25 48'S" T QI 6STY(6’S T IVOI| 6ST), 22 (8'S'T'IQIl 6ST) (8’S'T" ||W?|| 6ST), § (8'S'T' ||Vl 6ST)?,
4 8¢ &

X 25 (8'S'T’ |VR]| 6ST) (8'S'T’ [|WQ|| 6ST). (V.23)
8¢

In principle, using the invariant operator I; and the equation derived from the commutator [Wffi, ng] we can also
calculate the quantity

27 {6'S'T’ ||W9|| 6ST )2, (V.24)
:1:d
V1. SEARCH FOR A COMPLETE DETERMINATION L 81 ot Bt (VL.1)
OF EACH MATRIX ELEMENT p'p'p")6S'T'll Q ||
bp'p") 6 STY? WITH 6 = (w,p) OR (o, ) 2VSES + )T(T +1) {@'w'ST I VO ¢wST)

+SES+1 'w'ST ST
Up to now all the equations we have written contain ( ) “’1§5T1 {p'w I ¢10,STy

the index 6 and do not need it to be more precise. But
from now on, we shall distinguish the two cases: 8
=(w, ¢) and 8 =(0, 7). In each case we have specific
equations satisfied by the matrix elements of @, Ve,

X{pwST QI @ wiST )

and W9, +T(T+1) 2, {@'w'STIQI ¢wST)
p,w, S
(a) First case 6 =(w@): The operators £ and & are et
diagonal and we can write X{pwST IRl ¢1w,;S17T)
VSEF DT(T +1) {@’w'ST 1QIl pwST) = 06 s Byt (VL. 2)
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Furthermore, the operators & and @ give a relation be-
tween the nondiagonal matrix elements of @, V9, and
W9, For example, let us calculate the commutation re-
lation of  with @,

[Qy Qu.i] = Z; (—)a [VSS-OH Qu{]

o
=V2 L c(M1l;a+u, —a){Ve,, ;S +V5Quu i
o
Using relation (IIl. 9) we can write this again,

[Q’Qui]:ﬁ E C(lll;a +.U-,_'a)Vg+u.iS-a

V2 D c(11;i+5, =) T ; VY s
i

Now we take the matrix elements of this equation in the
base where @ is diagonal, and obtain
(W= w) (@’w'S'T' IR pwST)

TT'+1)-T(T+1) +8"(S"+1) = S(S +1)

- 2

X{p'w'S'T" IVl @wST).

(VL. 3)

We can apply the same calculus for &, We have first for
the commutator

[@: Qu.i} = E (_)awfa {Saa Qui} + E (-)Q[WS; Qui]s-a

+2 (=YwLiT,, Q.1+ E (=VIWT, Q. ]T.;.

We introduce the commutators, explicitly, and then use
the formula (III. 9) and get

[Cb, Quz]:ﬁz C(lll, a + By, = a){W2+u iS-ot +S-a ‘VSML i}
o

+Y220 c(11yi+j, =) W3 1T
J

+ T-J'WE i+j}'

Finally we take the matrix elements of this last equa-
tion in the basis where ¢ is diagonal and get
(@' = @) (@’ w'S'T'IQIl pwST)
={8'§"+1) =SS+ 1)+ THT' +1)~T(T +1)}
X{@'w'S'T" || WO} pwST). (V1. 4)

Observe that the matrix element, when diagonal in S
and 7', is necessarily diagonal in ¢ and Q. Furthermore
(V1,1) gives w =0 when S and/or 7 =0. This last result
has been independently given in a recent paper by
Quesne, 1%

Relation (VI. 2) can be given a new form if one ex-
presses the matrix element of V9,

T(T+1) O S(S+1)-521(S1+1)+4
01915,
(@"w'ST 1@l ¢1wS1T)
X {pwST IRl ¢1w,S1T)+S(S +1)

x 3 IT+1) =TTy +1) +4

2
w1w1T1
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X (@’ w'ST |QIl ¢1w;ST ) {pwST [|QIl ¢1,STy)

= 08y s Bt (VL. 5)

Using this result we can see that ¢ >0 if $=0 (or T =0)
and (/):0 when S=7=0.

(b) Second case 8 =(0T): Here the operators s and ¢
are diagonal and we can write

T(T +1) 2, @' T'STiQll oy7S,T)

937154

XAoTST ||l 047, S1T) = 00gg Oy
(VL. 6)
SS+1) 2, (o'T'STIQll 0,7,ST ) orST IQll 047, ST )

011'1 T1

= 76": 60104 N

We immediately see that the eigenvalues ¢ and 7 are
always positive, and 0=0 (7 =0) when T =0 (resp. §
=0).

Finally the commutators of s and ¢ with the generator

@,; lead to the pair of equations:

(o'~ 0){o'T'S'T' ||Q|| c7ST)

= 25 V3(2S; +1) W(S§'11;1S,)

097 S

><1{171"(T»/_—'+T) 'S T |Q 0TS T

X{o 7,8 T IV 07ST)

= VT(T +1) @’'7'S"T" || VOl 07,8y T)

x40y 78 T IQU oTSTY}H (7! = 7)o’ 7'S' T 1@l 67ST)

= 2, BERT, +1)W(IT'T11;1T,)

0171 T1

XSS 1) o' TS T |Qll 07, S'T )
X oy S Ty IV o7ST)

= VS +1)e' 'S T VRl 047, ST 1) {07 ST, | QU 07ST)H}.
(VI.7)

We emphasize the remarkable symmetry of the two
labels 0 and 7, which lengthens the same symmetry of
the quantum numbers (SMg) and (TMy).

Using the results (V1. 3) and (V1. 5) we can obtain the
eigenvalues of  and ® in the particular case when T
=p and any S,

Cps=p"H(p+1)2+(p' +1)%}

(P +2)(p+12+SS+D)(p+1)(p+2), (VL8)

wps =p"(p" +1)(p +1).

We have found that in particular simple and nontrivial
cases, the sets of equations given in Sec. V are suffi-
cient to calculate completely the eigenvalues of w and ¢
(or o and 7) and the matrix elements of €. As an exam-
ple, we have completely solved the case of the (320) IR
with 6 =(w, ). Ng; is easily calculated with the aid of
the formulas given in Sec, II, and we have also the non-
trivial multiplicity values N{,(320) =N,;(320) =3, In
Tables I, 1I, and III, we give the calculated values of:
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TABLE 1, This table gives the values of Zg. ((320)9 ST1Q (320)6’5’ T*)? in the upper
part. The rows are labeled by ST and the columns by $’7’. We give the value of the
multiplicity Ngr{320) between brackets when it exceeds one. In the lower two rows are

given the values of waz and Z,,¢ for every S'T’,

ST
st 32 Zl 30 33 22 421 20 13 12 10 03 02 0l
32 o 7 0 L e 0 0 0 0 0 0 0 0
30 % 0 393 0 i-o 4 % 0 0 0 0 0 0 0
30 0 % 0 0 0 —'33 0 0 0 0 0 0 0 0
23 7; 0 0 0 4 0 0 -‘i 44 0 0 0 0 0
(2)22 %8 —f% o = i %90—7 0 % %461 % 0 0 0 0
20 | o % 0 0 0 5—32 0 0 0 % 0 0 0 0
13 | o 0 0 i()g % 0 0 0 3 o 0 %}; % 0
B3z | o 0 0 % %‘Ll 27303— 0 555 ’—; % 0 '%53 %‘Z— i}%
(2) 11 0 0 0 0 % 76—" % 0 % -22—5 % 0 % %
1o | o 0 0 0 0 *3—4 0 0 0 4 0 0 0 %
oy | o 0 0 0 0 0 0 % 1—;1 0 0 0 0 0
:
0z | o 0 0 0 0 0 0 % 5’3-2- % o 0 0 0
01 0 0 0 0 0 0 0 0 44 4 2 0 0 0
3 3
}e Lo 0 0 0 18 | 14 | o 0 14 | so 0 0 0 0
..,% © 248 | 168 | 128 l2a8 | 170 L sos | oror {168 | oson | s 8 128 104 | 8
TABLE II. This table gives the values of Zg, ((320)8ST | V9| (320)6’S’T°)2. The rows
are labeled by ST, the columns by $'7”,
ST
sr\k_az 3 30 23, 22, 21 20 13 12 11 10 03 02 . 0l
32 [ 1281 0 0 0 4 4 0 0 0 0 0 0 o o
31 b 15—8 0 0 20 7?‘1 0 0 0 0 0 0 0 0
10 0 0 0 0 0o | o4 0 0 0 0 0 0 0 0
23 0 0 0o | 128 4 0 0 0 4 0 0 0 0 0
22 3'55 8—5"‘ 0 z_sg 08 % 0 55—‘*- % % 0 0 0 0
21 33& 313—5‘1 9—]‘% 0 '—§—3 %“‘ 2—38 0 78 %" 85—4 0 0 0
20 0 0 0 0 0 28| o 0 0 60 | 0 0 0 0
13 0 0 0 0 20 0 0 % % 0 0 0 0 0
12 0 0 0 % ';2 8] o %ﬁ %7—4— -'—Z;é 0 % i—” 85—4
1 0 0 0 0 73—0 %" ng 0 'T"’ 2 1_(319 0 L‘;—O L}’O
10 0 0 0 0 0 84 0 0 0 oo | o 0 0 0
03 0 (] [4] 0 0 (4 0 0 b4 0 ] [1] 0 (]
0z 0 0 0 0 0 0 0 o |28 60 0 0 0 0
01 ro 0 0 0 0 0 0 o | 84 oo | o 0 0 0
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TABLE 1II. The rows are labeled by ST, the columns by S’ T’. It gives the values of

Zpo- 320)8ST Q11 (320)0°S' T {(320)8S Tl WR | (320)9’S’ T"),

ST
. 32 3] 30 23 22 21 20 13 12 11 10 a3 02 01
ST 160 56 628 l
32 0 — 0 S22 52 | = 0 0 0 0 0 0 0 0
3 5 15
31 800 0 I 640 o |- 52 26 0 [ 0 0 [ 0 0 0 0
Q 9 9 9
128 7
30 0 6470 0 0 0 = 0 0 0 0 0 0 0 0
5 60 | 628
23 26 0 0 0 52 0 0 160 1 628 | 0 0 0 0 N
5 | 3 i5
364 28 364 1798 28 1798 | 147
e e === 17 L= 0 L= — 0 0 0 0
22 5 15 0 5 15 15 15 5
4396 364 | 896 1798 596 803 | 476 628
= | == 0 —== 0 = | = | == 0 0 0
2! 15 5 5 9 197 17 15 5 15
392 596 276
=15 223 0 == 0 i} 0. 0
20 0 = 0 0 0 3 0 0 S
640 | 56
13 0 ¢ Q 800 | 20 Q 0 0 52 0 ¢ — | = 0
9 9 9 9
4396 1798 | 803 0 364 | o0 476 o 896 [596 628
r2 N 0 0 45 9 15 5 5 45_| 9 15
245 | 476 92 476 | 100 92 100
== | 2y 2 0 — |12s - o | 3= |\
" N 0 0 0 3 3 3 3 3 3 3
200
10 0 0 0 0 0 %§ 0 0 0 100 0 0 o |57
640 | 128
03 0 0 0 0 0 0 0 =y | el Y 0 0 0 0
- —
392 | 596 | 216
e |22 £ 0 0 0
02 L 0 0 0 0 0 0 0 i B S 0
628 200 ‘K
== 00 | = 0 0 0
01 L e 0 o | o 0 o | o L 0 3 1 | \ )

2> {(320) 65T ||Q}] (320) 8'S'T "2,
8

22 {(320) 6ST || VO|| (320) 8'S'T "2,
L4

§ {(320) 6ST |||l (320) 6’S'T")

8

X {(320) 6ST ||WRIl (320) 6'S'T"),

respectively. Note the particular result (characteristic
of the IR with p” =0)

Zy) ((320) 6ST |Qlf (320)8'S' T "
8

X{(320) 6ST ||V9|| (320) 8’S’'T’) =0.

Finally in Table IV we give the eigenvalues of the opera-
tors 2 and & and the matrix elements

{(320) w@ST 11Q1 (320) w’@’'S'T’)?. Note that these matrix
elements can be irrational, but ¢ is always rational.

CONCLUDING REMARKS

We want to point that we have been able to directly
derive (that is without the medium of the Gel’fand basis)
the eigenvalues of the operators © and & and all the
semireduced matrix elements of @, in the particular
case, taken as an example of the [320] IR in which the
multiplicity Nsz, of the (ST) states of SU(2)®SU(2) ex-
ceeds 2, and reaches 3 for (S=1, T=2}and §=2, T
=1). Some of the eigenvalues of these operators are
irrational numbers; but we have shown that the sums
over the square of the semireduced matrix elements
(STIQIS'T’Y =3,y (8STIQU6’S’T*) are rational num-
bers. Moreover we have given a method which allows
the same calculation for any (pp’p”) IR,

Recently a work has been published by Quesne, 1% who
has computed the eigenvalues of € and & for a number
of IR. We are in exact agreement with the results of

523 J. Math. Phys,, Vol. 19, No. 2, February 1978

thig author, if we make the following correspondence
denoting the operators of Ref. 16 with a prime to avoid
any possibility of confusion:

1
QékZEQu:’)

CMY =570 SuR g uiTss
ai

C(ZOZ) =%Z> (_)iViTV_T‘ - éz: (-)asas-ma
7 o

Cl2 =175 ()2 VEVS, =32 (=) T, T,
o

i

CUID L 37 (<)o**i% 0 (11150, -pt)

apnif
X (11154, = §) 8.0 T 4y Qo 101 |

Qf =

£,

L
2

1

&' =4 =30 (<)T, T =325 (=)"S,S,
i o

~32 (<) S .S T, T.,.
ot
With the vectors V and W defined in Sec, III, we can
easily build a set of SU(2)®SU(2) invariant operators,
in the enveloping algebra of SU(4):
23 ()8 VE,, 2 (=) v, 2 (-)°WSS
o i

o

-a?

Z) (-)‘WiTT-iy 2 (—)avgv-sa)
i o

2(=YVivE,

L= VEWS,, DYWL, D (-)ewEwS,,

o

2 (=)wWIWT,,
i

A. Partensky and C. Maguin 523



TABLE IV. The rows (and columns) of this table are labeled by the values of ¢ (first row and column), ¢ {(second row and column),
and ST (third row and column) relative to the (320) IR. The other numbers are the values of the square of the semireduced matrix
elements of @, i.e., {(320) weSTIQI (320)w’'¢’S'T"?,

524

@ 248 168 128 248 170 170 90 90 128 104 168 90 90 128 58 58 8 128 104§
w [l 0 0 0 3 ~3 o7 EY 0 0 Q =57 -3 0 5 -5 0 0 0 0
sT o2 31300 23 22 22 21 21 21 20 1312 12 12 11 i1 10 03 02 01
5 5 >
248 0 200 8, 1 2 2 20 2 iz, 0 0 0 0 0 0 0 0 0 0
3 5 57 57 05
40 32 10 10 1
168 31 — = — == 2 2 -
68 0 3 5 0 S 5 3 0 5 0 0 0 0 0 0 0 0 0 0
) 3 2 35
1280 o0 o0 0 0 128 128 L 00 ) 0 0 0 0 0 0 0
57 57 5
248 0 EE 0 0 0 2 2 0 0 0 0 L1 0 uz o, 0 0 0 0 0
5 3 57 57 95
14 14 14 1 401+31F7  40L-5L'57 224 14 401-51.57 224 21
170 =3 a2 =2 =9 = = =2 9 = == =
! 3 % Y3 1 ¢ 156 156 95 5 156 156 CER 20 0 0 0 0
11 14 14 1 401=5157 30151 57 22d 14 401-51557  401+5L57 224 21
170 -3 23 — — = = =2 == 2
7 ' 5 " 3¢ 3 56 150 o 15 136 156 9% 20 0 0 0 0 0
— 350 14 896 5 ey 19 14 15 21 /— a\ a2/ /3 4 126
90 - 21 22 22 0 _5 1 2 s 2if /s 41y 21f /3 41
+oT I 3 3% TiggH0t-sLsh - o 0 G 3 0 0 s ( 19 95) 5 (l/ 15°55) B ° 0 0
330 14 896 - 19 14 15 21 341\ 2/ /3 o4 126
90 57 21 =X 22 0 401 + 51.75% ) 22 ) = =2 =t Ey U L B Y AL =2
¥ 171 5 3% Tigg oL+ 5150 ¢ 1 ¢ 171 0 0 3 0 s\ V19 o5)] B 19 95 95 0 0 ¢
28 B, D 224 22 520 ER ) 32 16
128 0 se = 0 e = 0 0 0 = 0 0 0 = 5 T = 0 0 0
104 0 2000 £y 0 0 0 u 14 320, 0 0 0 0 g & 0 0 0 0
15 3T 57 19 5 5
40 10 10 6z .
168 0 13 0 [} — — — 2 3 L
0 5 5 5 0 0 0 0 0 i 0 0 0 5 0
— 350 5 - o 15 1419 21 896 14 126
90 5% 12 &2 L2 + 51 101 — 31,737 = = = = = =
37 [ 0 0 TH gtk GO1=3L757) 0 0 0 5 3 0 0 3 0 855 171 95
= . 350 5 P 3 . 15 14 19 21 896 14 126
90 ~\FT 12 0 0 2 (401 = 31,7 240151 75% 15 4 19 ELS =5 2 =
5T 0 1 1::(;3(401 51.57) 1:;(;3(4“1 51:57) 0 " 0 0 5 0 i 0 5 0 3 1 195
784 224 4 32 52 49 320 16
128 0 PR 0 0 = 1 a3z E<3 2 =2
285 57 o 0 RS 0 0 0 0 19 19 0 57 57 57
3 <3 1 o0 0 o o o 33 B3 4 5[5 4Ly 260 2 o B3 4\ 5f [ 41y 160 25 5 : o, zz
2 5 Vis 95 S\ 19795/ 37 03 5 \I19795 ) B\y19 95) 57 1 3 3 3
) _ Yo Ire - i 25 2 2 2
58 -3 11 0 0 00 0 ssf /3 41} 35 /‘_ 41\ 160 2 0 °(~1/f—9—é-1-> 8—“‘( 5 f)—l) 17670 0 ‘4—0 = 0 = =
s\Wis~795) w19 93/ 37 3 ‘ > RV ’ ? :
. 126 126 50 25
5 0 00 0 00 0 =0 126 50 > ) 25
0 : i = 0 0 0 0 [ 2 0 0 0 5
2 128 128 35
128 0 03 0 o= = =2 )
0 0 0 0 0 0 0 0 0 5 = = s © 0 0 0 0 0
104 o 02 0 0 0 0 0 a 0 0 0 0 H 1 1 220 6 g 0 0 0 ¢
5 57 57 15 5 5
8 0 0or o 0 0 0 0 0 0 0 0 0 o 126 126 LI 3 25 0 0 0
1 19 57 3
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All of these operators are not independent [for example
Sa(=)2S, VS, =3 (=)T,V%]. In her paper Quesne states
that among all of these, only seven operators are inde-
pendent, and form an integrity basis for the SU(2)
®8U(2) scalars belonging to the enveloping algebra of
SuU(4).

Using them we have written the pair of operators €
and ®, first introduced by Nagel and Moshinsky, ? and
we have furthermore shown that another pair of opera-
tors, which we have called s and ¢, allows the solution
of the state labeling problem, !"
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Poincaré is a subgroup of Galilei in one space dimension

more

Emili Elizalde®

Departament de Fisica Teorica, Universitat de Barcelona, Diagonal 647, Barcelona-14. Spain.

Through an imaginary change of coordinates, the ordinary Poincaré algebra is shown to be a subalgebra
of the Galilei one in four space dimensions. Through a subsequent contraction the remaining Lie
generators are eliminated in a natural way. An application of these results to connect Galilean and

relativistic field equations is discussed.

1. INTRODUCTION

Some papers have been issued' which deal with the
connection between the usual relativistic field equa-
tions (those of Dirac, Bargmann and Wigner, Proca,
Rarita and Schwinger, and Singh and Hagen)? and the
nonrelativistic ones (of Levy-Leblond and Hagen and
Hurley).? In particular, for example, from the Dirac
eqution one obtains that of Levy-Leblond® for a spin-
particle, and subsequently the Schrodinger —Pauli equa-
tion, and starting with the Bargmann—Wigner equation
for an arbitrary spin particle one obtains the 6s +1
Galilean invariant theory of Hagen and Hurley.®

These connections have been established by means of
a general change of the coordinates of the Minkowski
space, which has the property of showing up a Galilean
(2 + 1)-dimensional Lie subalgebra in the ordinary
Poincaré algebra,* The usual light-cone frame?® and the
nonorthogonal one of Bell and Ruegg® are interesting
particular cases of this general coordinate transforma-
tion, Moreover, making use of a convenient parame-
trization of this coordinate transformation a (2 + 1)-
dimensional Poincaré algebra can be reobtained from
the Galilean subalgebra in a continuous way and for a
particular value of the parameter. Thus the circle is
closed, making possible, in particalar, the calculation
of higher-order terms of the Schrodinger —Pauli equa-
tion derived before.*

It is the purpose of the present paper to go one step
ahead of this program by studing in a more general
manner the connection between the Galilei and Poincaré
algebras, It will be shown by means of a certain
imaginary coordinate transformation of the (4 +1)-
dimensional space—time frame—which changes the
fourth spatial and the time coordinates—that the
ordinary Poincaré algebra is a subalgebra of that of
Galilei in four space dimensiong. With a subsequent
contraction of the Lie group, the rest of the generators
will be consistently eliminated, and what will remain
are exactly the commutation relations of the ordinary
Poincaré group. We think that this procedure will be
of much use in the derivation of relativistic field
equations for any spin starting from Galilean invariant
ones, in a process inverse to the one which has been
employed before,' Anyway, we are not going to develop
these possibilities here, where we only concern our-
selves with the mathematics of the problem.,

2 Address from October 1977: II. Institut fiir Theoretische
Physik der Universitdt Hamburg.
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Finally, we want to point out that the results of the
present paper confirm the feeling®'? that the loss of
one space dimension in the light—cone frame—and
in the Galilean equations thereby obtained—is not of
much relevance. In other words, it has been conjec-
tured"* that the correct ordinary nonrelativistic
expressions in three space dimensions would be obtained
in the light-cone frame provided one started with the
corresponding relativistic ones in one more space
coordinate. Although in the contrary direction, this is
also proved in this work.

2. FROM THE GALILEI TO THE POINCARE
ALGEBRA

Let x* = (x x, x*, x>, x*) denote a point in a (4 +1)-
dimensional space—time frame, x° being the time
coordinate, and let the coordinates of the same point in
a new frame x* = (¥°, ¥, ¥, ¥, ¥*) be defined as

2.1

where a, b, ¢, and d are some constants, to be deter-
mined in order that the commutation relations of the Lie
algebra of the Galilei group in the old frame be trans-
formed into those of the ordinary Poincaré group in

the new system.

Before going on let us recall that the Galilei group
G in 4 +1 dimensions can be put into the form®

G=[S04)x T |x[T,27T,], (2.2)

where T{¥’ is the subgroup of the generators of
Galilean boosts and T, that of the tranlations in 4-space.
As is usual, X means semidirect and ® direct product.

Now let
VSATBR, A=l BeoTo
=0 ac=oc (2.3)
4 __ =0 - ___~-cC . a
*=Cx+Dx, C*ad—bc’ “ad-bc

be the inverse transformation of (2.1), and let [, 2,
(i=1, 2, 3) be the generators’ of the subgroup SO(4)

of G, g, (r=1,2,3,4) those of the Galilean boosts,
andd, (1=0, 1, 2, 3, 4) the generators of the time—
space translations, If we denote with a bar the
corresponding generators in the new coordinate system,
we have
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g;=Ag; - Cx;,

(i=1,2,3). 2.4)

As it has already been pointed out,*'® the choice of the
new generators of boosts (which we call &, for a reason
that will become obvious in a moment) is not so clear.
In general, let us put b, =ag, + 82, (i=1, 2, 3), E,
being one of the possibilities, while the other two

are Xi (Bjorken, Kogut, and Soper)® and M° (quasi-
light-cone frame)* where M,, are the generators of
SO(4) < T,

The commutation relations of the generators of the
Galilei group in 4 +1 dimensions are the following. In
the first place, for the rotation group SO(4) we have

[RMSR ]_Z(érvRsu_FésuRrv‘éruRw w ru
(r,s,u,v=1,2,3,4)
or putting ./, = - 3¢, R, \, =R, (i,j, k=1, 2, 3), the

equivalent ones

0 Ag,~Cd, Ag,-C), Ag,-Cly
~Ag, +Cx 0 Iy -l
M, -Ag,+Crn -1 0 L
—Ag,+Cx, 1 -1, 0

— (AD - BC)g, Bg,-Dx, Bg,-D)\, Bg,-Dx

d, =(Ad, + Cdy, dy, dy, ds, Bdy+Dd ),

and the possible choices for k; which we have mentioned
above are the following:

k=g, =Ag, -Cx, (natural),
k,=1,=~-Bg, +Dx, (light-cone frame), (2.9)
ky =M% =~ (ag, + b)) (quasi-light-cone frame),

It is easy to see that in the transformed frame, the
commutation relations of the generators [, &, d;
(=1, 2, 3), and k=d,, are given by

[, )=, 0y, Uik, ] =i ke, (1, ds] =€, 10 ds,
(B k] =18%, 0y, [d;,d,]=[1;,h]=][d;,h]=0
[k, h]=i(aA -BC),, [k,, j]_z(qp+61)lz+3dd)

These equalities constitute the Lie algebra of the ordin-
ary Poincaré group, provided we put

CV:O, 32:'—1, ,8}):1’ /3(1:0,

(2.10)

aA-BC=1-(2.11)

or, equivalently,

a=0, B=xi, b=Fi, d=0, C=zi. (2.12)

The first choice of k; is consistent with these conditions
when A=0 and C=x7,B and D remaining arbitrary.
In this case k,=7Fi), (i=1, 2, 3). Also the second choice
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[, L) =1€;;0les

[, \=ide 0 G4, k=1,2,3), (2.5)
A, N ] =€, 0l
Moreover,
N, ]=06,,8, [N, d]=i0,,d,, [N, d]=
(A,8]=-ig;, [N,d]=~1d,, (2.6)

[li’g4]:[li’d4]:0 (i,j:1,2,3).

And finally, the Lie algebra of the ordinary Galilei
group,

(0] =i by, (1,85 )=te 080 1, d,) =164,
le;,g;]=la;,4,1=[1 i,do]:[d‘ d,)=0, lg;,dol=id,,
lg;,d,]1=ib,,m, [1,,u]=ld,,1]=lg;, nl=ldo, n]=
in a true eleven-parameter group representation.®

In Egs. (2.5)—(2.7) we have listed the whole set of
commutation relations of our Galilei group in the
original frame. After the coordinate transformation
has been made, the new set of generators is given by

0

(AD - BC)g,
- Bg, +DX,
~ Bg, + D), ’
—-Bg,+ D),
0

(2.

i

is consistent, taking A = 0-, B arbitrary, C=D =4+,

and k; =x7X;., Finally, for the third choice we have

a=d=0, b=z, c arbitrary, and k, =¥¢A,. This is

the one we are going to study in more detail, *
Summing vup, through the change of coordinates

O =1/e)x,

0

=]

=xix?,

i (i=1,2,3)

!l

x (2.

0

=cx 4 S0

X =%ix,

=l

(¢ arbitrary)

the commutation relations for the transformed
generators [, k,,d; (i=1,2,3), and &,

13)

are those of the

ordinary Poincaré algebra. The rest of the transformed

generators are easily seen to be given by

—(I/C)gi, E;:(i/c)gu (—{4:(1/6)d0 (2'
and their commutation relations by
[AnAJ] 0, [liyxj]—lel,kx [’\”k,]_"‘iéijgw
[ 1,844]: ’ [’\”d]] Z/C)éiju, [}\i,/l]:(),
(X, dy=~(/c)a,, ) (2.
{ ,,gq] [ ”g‘l]:ixi, [g_'zudi]: LﬁTmh]I (i/(,‘)l.i
[g4sd4]: i/C )h; [lnd:]:[ki’d;]:[di’d_«i]:[hyd_:l]:o-
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Notice that when ¢ —~ = d-‘1 becomes a neutral element
of the transformed Lie algebra. On the other hand, as
the value of ¢ is arbitrary we can make it go to infinity
and, then, the only commutation relations of (2. 15)
which remain different from zero are the following:

[lnxj]:ieijkxk’ [Xi’kj]: - iéijg_‘l! [ki,é‘,]:ﬁi. (2- 16)

At the same time, observe that in (2.14) we also can
make ¢ as large as we like and, in this way, the
generators X, g,, and d, become negligible.

3. CONCLUSIONS

Starting with the Galilei group in four space/one time
dimensions and making the imaginary change of
coordinates given by {2.13), we have seen that the
commutation relations satisfied by the generators
transformed of I, g;,d; (i=1, 2, 3), and d, are
exactly those of the ordinary Poincaré algebra in the
Minkowski space. That the transformation must be
imaginary is clear if we notice that the Euclidean matrix
b,, must be converted into the Lorentz’s g,,. Moreover,
the transformed of the other five generators can be
made as little as we like without affecting in the least
the commutation relations which define the Poincaré
algebra. Therefore, the transformation which has
been carried out here can be defined as an imaginary
change of coordinates followed by a contraction of
the resulting Lie algebra with respect to the sub-
algebra of the generators (2.10) which satisfy the
Poincaré relations.

Following a procedure parallel to the one developed
elsewhere, !'* we presume that this result may be of
much use in relating Galilean field equations with
relativistic invariant ones and, particularly, to obtain
the latter from the former, in just the reciprocal way to
the one employed till now. The contraction of one space
dimension which takes place in the light-cone frame, »®
i.e., the ordinary relativistic equations in the Minkow-
ski space give rise in this frame to Galilean invariant
ones in 2 + 1 dimensions, also occurs here. In order to
prove that this contraction does not depend on the
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particular number 3 + 1 of dimensions of the Minkowski
space, we have started here with a (4 + 1)-dimensional
Galilei algebra. As expected, the spatial contraction has
carried us to a (3 + 1)-dimensional Poincaré world.
Extrapolating this procedure to an arbitrary number »
of space dimensions, it is plausible to believe that the
method develped here would transform a (n + 1)-dimen-
sional Galilei algebra into a [(# - 1) + 1]-dimensional
Poincaré one while, at the same time, it looks appealing
to think that the light-cone frame procedure would lead
from a (n+ 1)-dimensional Poincaré algebra to a Galilei
one in (7 — 1)+ 1 dimensions. Naturally this will have its
parallel counterpart at the level of the wave equations,
which always appear in the number of space-—-time
dimensions of the corresponding Lie group.

Let us finish by saying that the ultimate purpose of
this paper has been to find new and deeper connections
between the mathematical structure of relativistic and
Galilean Lie groups, connections which we hope will be
useful in order to throw some light into the rather
complicated world of their corresponding field equations
for different spin particles.
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SU, x SUys scalars in E; irreps
B. G. Wybourne

Physics Department, University of Canterbury, Christchurch, New Zealand

(Received 18 April 1977)

The branching rules for E;—SUs X SU$ have been determined for all irreps of E; of dimension < 52000.
Among these irreps only those of dimension 0, 1463, 1539, 7371, and 8645 contain an SU; X SUj scalar.
The Kronecker square and cube of the 133-dimensional adjoint irrep of E; are resolved, and the number
of symmetric second and third order operators that transform as scalars under SUg X SUS determined.

We have recently used the theory of Schur functions
(S functions') to greatly simplify the calculation of
Kronecker products and branching rules for the irreps
of the five exceptional Lie groups.?

A systematic labeling scheme for the irreps of the
exceptional groups, based on the maximal weights of
their maximal subgroups, has been established. The
relationship of our labels (A) to the customary Dynkin
labels® are given for a number of relevant irreps of E,
in Table 1.

Most algorithms for calculating the properties of the
exceptional groups make use of projection onto the one-
dimensional weight subspaces of the representations
and as a consequence are unable to treat the properties
of high dimensional irreps efficiently. Our techniques
basically involve projection onto the irreps of the
largest maximal subgroup followed by use of Schur func-
tions (effectively Young tableaux) to systematically
compute Kronecker products and branching rules for the
exceptional groups and various relevant subgroups. In
this way it has been possible to handle irreps even of
dimension greater than 30 000000 by simple hand cal-
culation. In the particular case of E, the branching rules
for E, — SU;XSU; were derived for all irreps of dimen-
sion less than 52 000.

The group structure E, D 8U,;XSUS where SUY is the
quark color group and SU, the quark flavor group has
been proposed® 7 as a spontaneously broken gauge
underlying a unified field theory of strong electromag-
netic and weak interactions. The elementary fermions
are ascribed to the (1°) irrep which decomposes under
E, — SU, XSU¢ ag®~1°

(1% = {rep{1%)e + {1} {1}e + {1*}o}e.
The adjoint irrep (21°) decomposes as
(21°) — {oH{21} + {1*}{1%}e + {1} {1} + {217} {o}e.

Ramond®™” has looked for irreps of E, that do not
couple to the fermion mass matrix and which are capa-
ble of providing the vector bosons with their required
Goldstone companions. Irreps of E, that can be asso-
ciated with vacuum expectation values that preserve
flavor and color must contain an SU, xSU¢ singlet’ (i.e.,
the {0}{0} irrep).

Using the techniques outlined earlier!:2 it is a simple
task to identify the irreps of E, that contain a SU,XxSUS
singlet. For the irreps appearing in Table I the singlet
state occurs only in the

528 J. Math. Phys. 19(2), February 1878 -

(0), (2°1%), (2°), (3°2°), and (42°) (1)

irreps once and not at all in the remaining irreps listed
in Table I. The branching rules for (2°1%) and (2°) are
known. %7 We also obtain

(3°2°) ~ {17} {32} +{1*}{31} + {o}{3%}° + {0}{3}°
+ ({2217} + 2{214} + {oh {21} + ({212} + {14 {27}
+ (2o +{12h {2}
+ {3218 + {29} + {2312} + {2} + 2{1}) {12}
+ ({3221} + {22} + {217} + 2%} + 2{1h {1}°
+ ({3223} + {313} + {21} + {2212} + {0} {0}¢,
(42%) ~ {ol{az e + {1°} {32} + {14} {31}
+ ({2417 + 219+ {oh {21
+ {22+ {h {22} + (27} + {12h {2}
+ ({3213 + {2312} + {12}y {1%}°
+ ({3281} + 2517 + {1eh {1}
+ ({424} + {2212} + {217} + {o}) {ole.

TABLE 1, Irreps of E;.

9y Dynkin label Dy
(0) (0000000) 1
(19) (0000010) 56
(219) (1000000) 133
(2°1%) (0000100) 1539
(29 (0000020) 1463
29 (0000001) 912
(32%1) (1000010} 6480
(372%) (0100000) 8645
(342%) (0001000) 27664
(3°21) (0000110} 51072
(3% (0000030) 24320
(3%2) (0000011) 40755
(428) (2000000) 7371
{4342?) (1000100) 152152
(4%34 (0010000) 365750
(4%2) (0000011) 885248
(543%) (1100000) 573440
(83°%) (3000000) 238602

0022-2488/78/1902-0529%1.00
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The identification of the SU; XSUJ singlets in E, irreps
is also important in the construction of operators that
break E, while preserving SU,XSU§ symmetry. The
generators of E, belong to the adjoint irrep (21°). The
Kronecker squares and cubes of the adjoint irrep may
be readily evaluated to give

(21%)® {2} = (42% + (2°1%) + (0),

(219)® {17} = (322%) + (219),

(219 @ {3} = (63°) + (4342%) + (322%) + (2°) + (21°),

(215)®@ {21} = (543°%) + (4328) + (452) + (352)
+(322%) +(2°1%) + 2(219),

(21%) @ {1°] = (433%) + (42°) + (3°2°) + (2°1%) + (0).

These results show that there is just one second-order
symmetric E, scalar operator (the usual second-order
Casimir invariant®) and no third-order symmetric E,
scalar. There are two symmetric second-order E,
symmetry breaking SUs; XSUj scalars transforming under
E, as (42%) and (2°1%) respectively while there are four
symmetric third-order E, symmetry breaking SU; XSU,
scalars transforming as (63%), (43%2%), (3°2°), and
(2°1%), respectively. There is no difficulty in determin-
ing the number of SU,XSU{ scalars appearing in higher

530 J. Math. Phys., Vol. 18, No. 2, February 1978

dimensional irreps of E, or determining the relevant
branching rules.
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Poisson’s formulas for wave propagation in a superfiuid
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(Received 28 February 1977)

The general solution of the initial-value problem for wave propagation in a superfluid is established. A
uniqueness theorem is also proved for the associated initial-boundary value problem.

1. INTRODUCTION

The solution of the initial-value problem for the
wave equation due to Poisson is a classical result in the
literature. In the context of the acoustic problem for an
inviscid gas the formula provides the solution for each
of the thermodynamic variables in terms of the initial
values of the variable and its time derivative. At low
temperatures however, when the gas exhibits super-
fluidity properties, the wave equation is inadequate in
describing the acoustic phenomenon and it becomes
necessary to use two coupled equations for the thermo-
dynamic variables.

It appears from the literature that Poisson type for-
mulas for transient wave motion in a superfluid have
not been obtained and it is the purpose of this note to
establish these. The two- and three-dimensional cases
are studied and extensions of the resulting formulas are
used to derive a uniqueness theorem for the associated
initial-boundary value problem.

2. THE INITIAL-VALUE PROBLEM

In the Euclidean space R?® the propagation of sound in
a superfluid is governed by the equations!

%p 92T
@ o —Ap—vy 3F= =0, (2.1)
and
92 92
8 .a__Tr AT_p—z-atp =0, 2.2)

where p and T represent the small changes in pressure
and temperature from their constant equilibrium values.
The positive coefficients «, 8, v, u denote the constants

(&) o), -(2)
’ s
ape T, ps; e oT aTe Lo

Prg ( 8s>
T P, 82\,
where pn, +ps,=p, and pa,, ps,, S, T,, p, represent the
equilibrium values of normal density, superfluid den-
sity, entropy, temperature, and pressure. The dis-
turbance variables p and T are functions of position

7[=(x,y,2)] and time ¢ and A is the three-dimensional
Laplacian operator.,

To complete the formulation of the initial-value
problem we impose the following initial conditions on
pand T:

P(_‘{, 0) :po(z)s T(Zi 0) = TO(Z)’ (2a 3)

0 oT

af (r,0=p), ;,0=T,0). (2.4)
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Throughout the analysis which follows we will assume
that p, T, p;y, Ti1s £=1,2 are sufficiently well be-
haved functions of » and ¢ to justify the mathematical
operations employed.

3. GREEN’S MATRIX

To solve the initial-value problem we introduce a
Green’s function G which is a two by two matrix
{GH(Z» 7'; 1)} defined by

AG=5(r- 7)), (3.1)
where 32 32
T g T
A= ,
a2 82
“HhaEs B—g A

I is the unit matrix, and § represents the Dirac delta
function, The initial conditions imposed on the ele-
ments G, of G are

Gilr, 750

bl . .
é_tcij(Z!Z,; 0)=0, i=1,2, i=12. (3.2)
To solve for the functions G;; we transform to the
polar coordinate system centered at #' and seek solu-
tions of the form G, (R, t) where R=[r-»"|. Usinga
Laplace transform we set G;;=[7 ¢"/G,,dt so that the

transformed equation (3.1) has the form
— ‘ysz
- U'Szg Bsz - A

where (see Ref. 2)

~ 1 3G, : )
581y= e o (72 2o )+ S i 4 G,

as?-A
’ Gub= gyt

— . 3G, ~ . =
Gf(;) =lim (Rz a—é"l> and Gt(ll') =11m(RZG”). (3. 3)
R=-0 R=0
If {5”} is a solution of (3. 3) we must have
19 0
2 i 2 _~ - 2
S “RP3R (R aR)’ s
{G,,}=0. (3.4)
1 38 0
- us®, B - 3R (Rz ‘a‘ﬁ)
together with
G¥=-5,/4r, GH=0, i=1,2, j=1,2, (3.5)

where 5, is the Kronecker delta symbol. Solutions to
(8.4) of the form G,;=h;,e"**/R which remain bounded
at infinity can be obtained, provided x satisfies

© 1978 American Institute of Physics 631



- 18?2

Bs® - \?

2 2
as® ~ 2%, -0 (3.6)

2
- s,
or

s\* s\?
(M—w)(;) - (a +B)(>T) +1=0, 3.7
The solutions of this quadratic for (s/A)? are given by!
2}, and ¥4 (4, > u,), where u;, i=1,2 are the two velo-
cities of sound propagation in a superfluid. The general
solution of (3.4) can then be written in the form

- -SRI u RO T

Gyy=hy " h{ B (3.8)
with

(dyy - DR =vadyh$?, ==1,2, j=1,2. (3.9)

The constants z{ can be determined such that condi-
tions (3.5) and Egs. (3.9) are satisfied, and by invert-
ing (3.8) we obtain

1 2
G= 27 (=1 "lﬁ(t—R/ui)Ai 3.10
TR 5V ’ (3.10)
where
Wt — o), vlagu)?
A= (3.11)

M (u1u2 )2, o (u1uz)2 - u?;_g

4, SOLUTION OF THE INITIAL-VALUE PROBLEM

The convolution of two scalar-valued functions
A7, t) and g(7,t) is defined in the usual manner by

Fratr, )= [ flr, T)glr,t =) dr

For two vector-valued functions a(r,¢) and b(r, ) we
define

a* by, t)=afb,(r,t) +a}b (7, 1) +akb (7, 1)

4.1)

4.2)

The algebraic properties of the convolution are well
known and need not be stated here. For the purposes
of our analysis we will need the following relations:

(& f(r, 1) =f(r, 1), (4.3a)
t* ij;(fz—tl =1, 0~ 1 L 7,0~ 717, 0), (4.3b)
a%(t*f(a_', 1) =1%(r, 1), (4.3c)
% (t*flr, 1) = aa—t(l *flr, 1) =17, t). (4.3d)

Equations (2.1)—(2. 2) may be written in the form

)

where F=(4). Also, if G, and G, represent the column
vectors of the Green’s matrix and ¢, e, the unit ortho-
gonal vectors (%) and (), then

AG,=8(r - 7)5{t)e;, i=1,2,

4.4)

{4.5)
Using (4. 3a) together with (4.4) and (4.5) we can write
w(t*(AG)* < (pe,) — t*(AF)* - (G e,))

632 J. Math. Phys., Vol. 19, No. 2, February 1978

=pt*plr, )6 (r - v'), (4.6)

and
Y(P*(AG,)* - (Te,) — t*(AF)* « (Gye,)) =0,

By adding (4, 6) and (4, 7) and integrating the result over
the interior of a large sphere with radius L (> u, )
centered at r’ we find, with the aid of (3.2) and (4. 3b)

pt*plr’, 8)

4.7

=ut* [ (GHAp — p*AG,,) AV +yt* [(GHAT - T*AG,,) dV
i f (pot tp) (@ Gyy = ¥Gay) AV

{4.8)

The first two volume integrals in (4. 8) can be trans-
formed into surface integrals over the surface of the
sphere by using Green’s formula. These surface inte-
grals vanish since G,; i=1,2, j=1,2 and their de-
rivatives vanish for L > uyf. As L — the remaining
volume integrals in (4, 8) can be evaluated by using the
polar coordinate system centered at 7' and the funda-
mental property of the delta function. By differentiating
the result twice with respect to ¢ we obtain, with the
aid of (3.10), (4.3c), and (4.3d),

1
T 4n Gt = ud)

+y [ (o +1T)*(BGy ~ 1Gyy) dV.

plr', 1)

X i (= 16 = etlugueg))PH

+ ')/(1,117/12)2T(i)),

where

pl = %(t [pO(R:14it)dQ )

+t[p1(R=uil)dQ, i=1,2, (4.10)

and

TW = :—t(tho(R =u;t) dQ)

+t/T1(R:u,~t)dQ, i=1,2, (4.11)

with d© denoting the element of solid angle. In a simi-
lar manner, by adding the equations

y(I*(AG,)* - (Te,) — t*(AF)* - (Gye))

=yt*T(r, )6 (r - '), (4.12)
and
p(*(AG,)* -« (pe) — t*(AF)* - (Gype,)) =0, (4.13)
and integrating the result over R® we obtain
1 2 . .
T(r't) = _ 1)i-1 2 _ 2 T(l)
(r't) —__—_—47r(u§ =D g (= 1) (s ~ Bluquy)?)
L
+ 11 (uquy) P ). (4.14)

Each of the functions p(»’, t) and T(¢’, t) is determined
uniquely from (4.9) and (4.14) in terms of the initial
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values of p, T, 3p/dt, and 97T/d¢ on two spheres of radii
uy! and uyt centered at #’. The solutions obtained are

a superposition of the two types of sound wave which
occur in a superfluid, If the initial disturbances vanish
everywhere in R® except in a finite region B then, for
v« BUdB and D=sup,c5lr—* | the subsequent dis-
turbances at »’ due to the first sound wave occur during
the time interval (0, D/u,) and cease thereafter. Simi-
larly the disturbances at r’ due to the second sound
wave occur only during the interval (0, D/u,). Also
during the interval (0, D/u,) disturbances due to both
types of sound waves occur at #'. If ' £ BU3B and
d=inf _glr—'l, then the disturbances at 7' due to

the first and second sound waves occur only during the
time intervals {(d/uy, D/u;) and (d/uy, D/u,), respec-
tively, and during the interval {d/uy, D/us) the distur-
bances due to both types of sound waves occur at f .

In concluding this section we note that formulas
(4.9) and (4.14) are consistent with the classical result
due to Poisson in the limit p, =0. Using (3.7) and the
thermodynamic relations it can readlly be shown that
when ps, =0 the quantities 142, ul, ﬁuz, uu2 assume the
values 0, ¢2,1 and - (3s,/3p,)r,/ (35,/9T,), , respectively
where c? (ape/as )se. Also P® and Tm reduce to Do
+tp, and T, + T, so that (4,9) and (4.14) have the form

plr', )= i—ﬂ(%(tfpo(R:ct) dQ)

hmszQ) (4.15)
and
Is, (T(+', 1) - Ty - tT,)
(%),
(ap) —po—tp): (4.16)

Equation (4.15) is Poisson’s equation and (4. 16) is con-
sistent with the isentropic motion of a gas for which

os , os
(5), rern+ (532), e

and its time derivative vanish initially and throughout
the subsequent motion.

5. THE TWO-DIMENSIONAL CASE

In the two-dimensional case it can be shown that
G j=hy K (AR) with lim,_ (R3G /aR)_— 5,/ 2m and
1imR 0(RG =0, where K, 1s the modified Bessel func-
tion and R2 (x" - x)*+(y' = y)®. The constants k,; are
found as before and after an mversion we obtain the
Green’s matrix in the form

i1 wH(u;t = R)
6= E(’ 1(u%tz_1;:=2)172A,,

5.1

271’(2{1 - uz) §=1 ( )
where H is the Heaviside function.

The solutions for p and T may be written

1

p(_’: ’t)= 27T(u%—u§)

X 25 (= 1) = o G HPD
+ P TV), (5.2)
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and

1

T(f,t)=m

X 33 (= 1162 ~ Bluguy) T
i=1

+H(H1u2)213(”), (5.3)

where
P(g)_ podxdy
at (u —‘2)1/2

(5.4)

and

T‘”— _Todxdy
at (1 21‘2 —‘2)1/2
+ T, dx dy
f/Di

i=1,2
W) s » 4y

with D,, =1, 2 denoting the interior of the circles of
radii #;¢, i=1,2, centered at 7'.

{5.5)

In this case if the initial disturbances vanish every-
where in R? except in a finite region B then, for
r'e BU aB the subsequent dlsturbances at 7/ due to
both types of sound waves occur during the time interval
(0, «). In contrast to the three-dimensional case there
is no finite time at which the distugbances due to the
sound waves cease. Again, if »'#BU 2B and
d=inf, R, then the disturbances at 7' due to the first
and second sound waves begin at the times d/141 and
d/u2 respectively and persist thereafter,

As in the three-dimensional case it can be shown that
formulas {5.2) and (5. 3) are consistent with the classi-
cal solution in the limit p;, =0. For brevity we will omit
the details,

6. A UNIQUENESS THEOREM

In Ref. 3 a uniqueness theorem was derived for the
initial-boundary value problem associated with the
classical wave equation which was valid both for
bounded and unbounded regions. A unigueness proof was
also given in Ref, 4 for the analogous problem asso-
ciated with superfluid acoustics. However this latter
proof was valid only for bounded regions. It is our
purpose here to show that the uniqueness proof can be
established for infinite regions by using an extension of
the Poisson formulas derived above.

The solution of the initial-boundary problem will be
unique if p=7T=0 is the solution of the initial-boundary
value problem consisting of Egs. (2.1)—(2. 2) together
with the initial conditions

d 2
P, 0 =7(7,0= L (r, 0= T ,0), 6.1)

and the boundary conditions
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op

35 +Ekp=0 (6.2)
on S,
oT
P +IT=0 (6.3)
and
p=0 (6.4)
on S,,
T=0 (6.5)

where S;, i=1,2 are bounded closed surfaces in R®
with an inward normal denoted by v and k(y), 1(#) > 0.

By integrating the sum of (4.6) and (4. 7) throughout
the region exterior to §; and S, and interior to a large
sphere centered at #’ and differentiating the resuit
twice with respect fo time we obtain, by virtue of
{4.3d) and (6.1),

P, 1) = f (GHAp = p*AG,,) dV

+ 5 /(G;lAT— T*AG,,)dV. (6.6)
Using Green’s formula we transform the volume inte-
grals in (6. B) into surface integrals over S;, i=1,2 and
the surface S of the sphere. If inf,-s 5,Us, ly— vl
>>u4f, then the surface integrals vanish since

G;; £=1,2, j=1,2 and their derivatives vanish. There-
fore, p(v't)=0 when || is sufficiently large. By using
Eqgs. (4.12) and (4.13) we can show in 2 similar manner

534 J. Math. Phys., Vol. 19, No. 2, February 1978

that T{(»’,#)=0 when 7’| is sufficiently large. This
ensures the existence of the volume integrals in the
following positive definite energy function E{(f), where

50 =3 [ (00979 #7711 (2 2

3T \? 3p 2)
- ﬁ> +u(a[3—w)<57> av

+%f6(ukp2+VlT2)do, t=0, 6.7)
Sy

and V denotes the gradient operator in R3.

By differentiating (6.7) with respect to ¢ we obtain,
using the divergence theorem together with Egs. (2.1),
(2.2), and (6.2)—(6.5), dE/dt=0. Since E(0)=0, then
E(#)=0, t= 0 and uniqueness follows. Unigueness can
be established for the two-dimensional problem in a
similar manner,
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An algebraically special subclass of vacuum metrics

admitting a Killing motion?
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The subclass of vacuum metrics with a Killing vector field (which may be either timelike or spacelike),
having two of the nonzero eigenvalues of the Ricci subtensor equal, is investigated. Invariant methods are
used. A special triad is chosen for the associated space ¥ which gives rise to a special tetrad for the
space—time V,, and this choice simplifies the expressions for the Weyl tensor and Newman-Penrose
coefficients for V,. This subclass of vacuum metric reduces to two cases depending on whether or not the
complex dilatation vanishes. In the first case the metric reduces to an example of plane-fronted waves. In
the second case the problem reduces to a difficult pair of partial differential equations which has not been
solved in the fullest generality. However, it has been shown that this case includes Robinson-Trautman
metrics, Held-Robinson metrics, and some additional new Petrov type-III metrics with twisting rays.

1. INTRODUCTION

A stationary vacuum metric gives rise to an
associated space V,. The eigenvalues of the Ricci
subtensor of V, satisfy the weak inequality® », < A, <A,
=0. The case A = A; corresponds to either static V, or
the Papapetrou—Ehlers class of stationary V,. It is
a reasonable question to ask now what metrics
correspond to the case r,=A,. To include possibly more
solutions in this class, the Killing vector in V, is
allowed to be either timelike or spacelike.

In Sec. 2 the necessary facts in space—~time admitting
a Killing field are reviewed. We write down the vacuum
equations in complex invariant form, generalizing the
form of Das.? Although these equations are similar to
those of Perjés,® a different choice of frame for V,
leads to formulas connecting the structure of V, and V
which are simplified over those of Perjés.

Section 3 describes in detail the derivation of the
class of spaces defined by the equality of the two non -
zero eigenvalues of the Ricci subtensor. This algebraic
subclass falls into two cases according as the complex
dilation is zero or not. The first case can be completely
solved and the metric is transformable to the stationary
pp-waves.* The remaining case can be reduced to the
formidable pair of partial differential equations:

LW
W,zE:-(Z+Z)e M

T .=~ {(z+2)(e")7T,

122

where z is 2 complex coordinate. In fact, this particular
algebraic specialization carries over to the V,, with

the result that our solutions are of Petrov types N and
III. Included in the class are the stationary Robinson—
Trautman metrics® of type III, and a new class of type
IIT metrics with rotating rays independently discovered
by Held. " Moreover, we give some new solutions, and
provide further insight into the reduced equations.

This work is based on a thesis submitted by this author in
partial fulfillment of the M, Sc, degree at Simon Fraser Uni-
versity, September, 1975,

P present address: 1645 East 50th Street, Chicago, Illinois
60615,

SSupported by NRC Grant 3993,
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In our formulation the only explicitly known examples

of these metrics are nonstationary, possessing an
everywhere spacelike Killing vector field. The new
metrics are not asymptotically flat, and contain wire
singularities. The general solution of the pair of partial
differential equations still remains an open problem.

2. NOTATIONS AND FIELD EQUATIONS

The space—time manifold V, is chosen to have
signature 2. A Killing vector is assumed to exist in
V, and that gives rise to an associated space V;. The
indices ¢,j, k,***,M, N, P,+-- range from 1 to 4,
while «, 8, ¥, ---,A, B, C, - range from 1 to 3; often
the indices 2, 3 are replaced by O, 0 the complex
conjugated indices, The orthonormal ennuples are
denoted by A, in V, and A,* in V,. Fixed coordinate
indices are written which symbolizes the coordinates,
thus, we have A", A,* as some of the components of
A, The summation convention is followed on capital
indices as well as on lower case indices. A comma
denotes a partial or invariant derivative whereas a
vertical bar denotes covariant differentiation in V3
either with respect to the coordinates or with respect to
the triad, The definitions of Ricci rotation coefficients
such as ¥ .= ;2;*1.* in V;, and Riemann and Ricci
invariants are those of Eisenhart.® The definition of the
covariant derivative of an invariant 7, with respect to
the triad is
TAIB = TA.B + ‘)/CAB TC

=T 150 " 25" (2.1a)

Antisymmetrization is indicated by 7', = (T = Tyo).

In coordinates adapted to the Killing motion the
metric form of V, is written as

P=1Mx)g, 5 (X) dx* dx® - f(x) [a, (%) dx® + dx*]. (2. 1b)

The metric form & =g.s(X)dx*dx* defines the associated
V,. According as the Killing vector field is timelike

or spacelike, the function f(x) is positive- or negative-
valued, V, has signature 3 or -1 and the indicator
c=+1, or -1,

The following definition sets up a natural correspon-
dence between orthonormal frames of the V; and V,:
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A(‘”i — (Cf)'”zé‘," ,
AA«: — (Cf)l/zhAi _ (lAéqi] ,

1= = a
where 2,720, a,=a,2,*.

(2.2)

Defining ¢*=cf*n**a, ,,, where 1,5 =Vcg €,4,, the
field equations show that ¢, = ®,,, Where ¢ is a scalar
function called the twist potential.

If a complex potential F is defined by F=f~i¢, the
vacuum equations reduce to

R,y +i(ReFY%(F ,F ,+F ,F ;)=0,
EA(F 45 +7° 4 5F ¢ — (ReF)'F ,F ;]=0,

(2.3)

where R, ; denotes the the triad components of the Ricci
subtensor and a possible choice of g, is given in (2.4).
One can now write down a complex version of the field
equations, derived either from spinorial considerations?®
or the geometrical optics in V,. The complex triad
vectors are chosen to be A%, 1;,%, X,,%, where

Moy = )2 (M) + x5, %), and gogh ) Ny =1. Triad
indices are therefore raised and lowered by the funda-
mental form

0cO

[gAB]:[gAB]E c00
001

(2.4)

The complex Ricci rotation coefficients are denoted
as follows:

- = 8
X=Y100= Ay M oya My s 2.5)

B= Y1005Y = Y1085 05 Yoous €= Yoio-

lal, |6}, and ¥ have the significance of the first
curvature, shearing, and complex dilatation of the
A, *-tangent curves, respectively.

With these notations, the field equations (2, 3) take the
following form:

a,-8,= a?+ep(y+7=26) +cae+§f‘2(F'o_I::,0),

(2.6a)
B~ Yo=Y -¥)~2f+icf(F F ,+F ,F ), (2.6b)
Ya-ap==|al®-c|B|?-cy*+car-icf(F F ), (2.6¢)
€oteo=[B"=7[*+8(r-v) -2c|e|®
+cf?(cF ,F ~F F s~ F F 1), (2. 64d)
€,1-0 ,==a(7+0)+p(a+ce) —ce(V - 0)
+cf(F F ,+F F,), (2. 6e)
F  +2cF 3=-2c7F |+ (co - 20F ,+caF
+f‘1(F’12+20F'0F';)), (2. 6f)

where commas denote invariant derivatives. The com-
mutation relations are, for any scalar function #,

(2.7a)
(2. 7o)

Boo=hor=ah  +c(¥ -0k +chh i,
By = so=F =V, =ceh o+ceh ;.
As noted in (2,2) there is a natural correspondence
between adapted frames of V, and frames of the V.
With this correspondence, with each curve of V, may be

associated a null curve of V, by the following mapping
of tangent vectors: A, ¢ ~27/2(A,,* + A ,,%). The
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mapping of curves so defined is one-to-one and onto. If
we let our frame correspond to that of the Newman—
Penrose® formalism by 1¢=2""/2(A ¢ + A, %),
n?=2"2(= Ay + Ay ?), m*=2"12(A % +id5)), and
7t =272, —iA %), then we have a special choice
of gauge and null rotation for I* and »n®, respectively.
The results of this choice are to simplify the expres-
sions for the Weyl curvature spinors and the relation
between the Ricci rotation coefficients of V, and V,.
The following formulas for the Weyl curvature spinors
¥, 1=0,1,2,3,4, may be contrasted with those of
Perjés®:

‘2¢02F100+%f~1F,02

:F’OO+BF'1—CeF,O—i—%f'lF'oz, (2. 8a)
2V2cy,=Fyo +3f'F F ,
:F'Ol—céF'0+aF'1+§f"F,OF'1, (2. 8b)
2, =Fy —cf 'F (F 5
:F,u—caF'z)—cb?F,O—cf"F,oF,a, (2. 8¢)
-2V2y=F\5 +3f'F 3F
:F'51+'&F’1+CGF’5+§f"1F';)F'“ (2. 8d)
-2, =Figp+zf
=F 33 +BF ,~ceF+3fF . (2. 8e)

The complex Ricci rotation coefficients are also
simplified. The Newman—Penrose® spin coefficients
have equivalents in our notation; see Table 1.

3. AN ALGEBRAICALLY SPECIAL SUBCLASS OF V,

In a stationary space—time the eigenvalues of the
Ricci subtensor of V, are given by*

A =0,
X = - (ReF)2(A(F,F)+ | AF|),
A= — (ReF)*(&(F,F) - | A,F|).

For the static case or for the Papapetrou—Ehlers class
of stationary metrics, A, =2;. In this section we in-
vestigate another possible algebraic specialization,

3.1)

TABLE I,
N~—P spin
coefficient “Stationary” equivalent
K LY e fF g
o aNZIF2E)
p a2y =3efF )

_ %cfi /2 (e)

o 3Ye~YefF Y
B —3 Y e—SefT1F )
% (c/22) 6 —scftF,y)
€ (1/2/2) f1/2(6 ke fiF )
T Left/ia)
1 (N2 2y —befiF )
A (e N2Z) 1B

— Ve~ of1F Y

=
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namely A, =2,. In this case 4, F=0, which may be
written as F > +2cF F ;=0. By choosing the direction
of x,,* and the orientation of the iriad, we can ensure
that F | =F ,=0. Then 1,% is along the eigenrays.

The commutation relation (2.7a) (substituting F for k)
and the potential equations (2, 6f) give o =3=0. Hence,
the eigenrays are geodesic and shear-free, and the
space—time is algebraically special.

Since r(,,* is along geodesics and F , =0, we can
choose coordinates {z, Z, 7} in which  is an affine
parameter along the geodesics and Z=F. Using the
freedom in the triad, we can put F ,=@ where € is
real. This brings the triad into the form

A(l)azcéya’ )‘(o)aznéra'*_Qéza, (32)

where 7 is complex. The remaining coordinate freedom

is 2=z, 7=7+ A\(z,Z). With our choice of frame the
metric for V, is

& =(dr —nQ dz —TQ™dZ)* + 2cQ?dzdz.

The effect of choosing F g real is to make A;;,* and
A5, tangent to the lines to force and lines of twist,
respectively; hence they are both normal to surfaces.
This leads to 6 =3(¥ —¥); from (2.6b), v,,=0; hence
6,,=%Y ,. We may distinguish two cases, y=0 and
y#0. When y =0, it turns out that we can use our
coordinate freedom to set n=0. When v+ 0, we use it

(3.3)

to make ™' —¥ pure imaginary, which is fairly standard.

With the conventions made above out of the way, the
solutions of the remaining equations is straightforward.
The results are as follows.

Case I (y=0): The metric of the associated space is
¥ =d?+ (z + DH(2)H{?) dzdz, (3.4)

where H is an arbitrary analytic function. H is related
to @ and ¢ by

Q=V2 |H|™Mz+2)"?, e=-cQ,.

(3.5)

In this case by Eqs. (2. 8) all the ¥,’s vanish except
for ¢,, and the space—time® is of Petrov type (4), The
metric of the V, is transformable to

& =dx®+dy? + 2dvdt - W(x,y)dE,

where W +W__=0. We thus have a special case of the
well-known plane-fronted gravitational waves with
parallel rays.*

Case II (y#0): The metric of the V, is
® = (dr +iT ,dz —iT L2V +2c (P + T2e dzdz, (3.7)

(3.6)

where T=7T(z,z) and V=V(z,Z) are real functions
satisfying the reduced field equations

(3.8a)
(3. 8b)

The complex dilatation v is given by y=(r +iT)™",
while @=e""/?|y| and e=~ce™"/*| 7| (iT,,7 -3V, ).

V a=-ce' ~(2+7)2,

1 Z

T,zE: -ce'T.

The metric of V, may be readily found by resorting to
(2.2). It is

&=z +2)"0- (z +D)dclr + U)(z +2)%d(z + Z)

+dt]?, (3.9)
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where & is given by (3.7) and U= U(z,Z) is a real func-
tion which is a particular solution of the equation

U,-U,=iT +T,. (3.10)

The metric form (3. 9) for the case ¥#0 belongs to
Petrov type (3,1). This metric involves unknown func-
tions V and T satisfying the pair of partial differential
equations (3.8). At the present moment the general
solutions of (3. 8) are not known. Nevertheless, some
special solutions of (3. 8) and the consequent vacuum
metrics will be mentioned.

The present case may be divided into two subcases
T=0and T+#0. For T=0 the vacuum metrics have
nontwisting eigenrays and are therefore of the
Robinsion-Trautman class.® Furthermore, there is a
special solution'® with T=0, namely,

& =(z+2)dr* - 61z +E)'3*a’z1 2
—(z+ 2 -4z +2)%(z +7) +dt]?, (3.11)
the space of “maximum mobility” of the type (3, 1).

For the subcase T#0, on the other hand, the rays
have twist and the metric belongs to a new class indepen-
dently described by Held. 5" In this case some special
solutions of (3. 8) are given by

V:Bx-z,

)

x=z+2z, y=i(z-2z), (3.12)

where o, 38, are arbitrary complex constants and
J,, Y, are Bessel functions of 1st and 2nd kind. As a
particular case (3.12) we have

T = x(+T)/2 (4 + By), (3.13)

where A, B are arbitrary real constants. This
corresponds to the solution obtained by Held.®’ By
putting A=B=0 in (3,.13) the metric (3.11) can be
recovered,

The new solutions generated by (3,12) are a subclass
of algebraically special vacuum metrics admitting a
spacelike (angular) Killing motion. Moreover, these
metrics contain wire singularities and thus none of
these are asymptotically flat,

The equations mentioned in the introduction are
obtained from (3. 8) upon defining

¥ =ce'lz+72) 1, (3.14)

Finally, we note that Egs. (3.8) are invariant under a
three-parameter group, based upon the following
characteristic of the equations: Whenever V="V(z,z)
is a solution, then so is

V(z,Z)= Vlaz™ +ib, az"' - ib) - 2In|z|*/a.  (3.15)
The three-parameter group leads to a two-parameter
family of metrics starting from any sufficiently general
metric, But the metrics defined by (3.12) are not so
well-favored.
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In the last line of Eq. (86), p,p, should be p, p,. The
matrix B in Eq. (100) should have a coefficient i(=v=1).
The explicit factors of Q in Egs. (110) and (120) should
be omitted, having been absorbed into B[Eq. (B5)]. In
Eq. (110), the subscripts “V” should be “L”, Equation
(118) should have an additional term

+[U,,(2 WU, (@) e 1(HHw,Q, 2 - d)),

and the entire resulting expression should be multiplied
by -1, as should the right side of Eq. (119), In Eq.
(A24) the factor “%” should be “2”. In Eq. (B5), the 31

CUMULATIVE AUTHOR INDEX

element should be 1Q,, not 3Q,, and the 22 element of
the matrix in Eq. (B9) should involve @? instead of QZ.
In Eq. {B16), 1+ 0 should be 1 ~¢ and E™* should be
replaced by (1 — 0%)E™! throughout this equation. The
prefactor of the matrix in Eq. (B19) should contain c,
instead of ¥V, (=V2¢,). In Eq. (B20), Q, should be QV,.
The right side of Eq. (B22) should be multiplied by - 1.
Note that the velocities defined by Eq. (B13) and (B21)
are identical. Though not in error, the different choice
of sign convention for the arguments of the exponentials
in Egs. (85) and (96) is potentially misleading.
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